Tiller, L.N., Oniba, E., Opira, G., Brennan, E.J., King, L.E., Ndombi, V., Wanjala, D., Robertson, M.R.“Smelly” Elephant Repellent: Assessing the Efficacy of a Novel Olfactory Approach to Mitigating Elephant Crop Raiding in Uganda and Kenya (2022)
Diversity 2022, 14, 509. https://doi.org/10.3390/d14070509 show/hide summaryHuman–elephant conflict is increasing across many parts of Asia and Africa. Mitigating elephant crop raiding has become a major focus of conservation intervention, however, many existing methods for tackling this problem are expensive and difficult to execute. Thus, there is a need for more affordable, farm-based methods. Testing these methods is key to ensuring their effectiveness and feasibility. In this study, we tested a novel olfactory deterrent, the “smelly elephant repellent”, a foul-smelling organic liquid, on 40 farms in Uganda and Kenya. Our results show that the repellent was effective at deterring elephants from crop raiding. Over the study period, 82% of 309 elephant crop raids were deterred in Uganda. In Kenya, the repellent deterred 63% of 24 crop raiding incidents, and there was a significant effect of the repellent on test sites compared with control sites. The smelly repellent could be a helpful crop raiding mitigation tool for farmers, as this study showed it to be effective, relatively cheap, quick to produce from locally available ingredients, and communities have a positive attitude towards using it. Ongoing work is exploring the potential for a market-based approach to take this to scale in a financially sustainable way.
Tiller, L.N., Williams, H.F.The elephant in the farm: long-term solutions are the key to coexistence (2021)
Anim. Conserv., 24: 733-734. https://doi.org/10.1111/acv.12741 show/hide summaryIn this current state of exponential human population growth, natural spaces are being eroded more than ever before. Human activities have modified and transformed over half of the global land surface (Chapin et al., 2000), causing extensive habitat loss and fragmentation, and leading to a global decline in species. The rapid conversion of forest to agriculture puts farmers on the frontline of conflict with wildlife, and nowhere is this more pronounced than in the tropics, where development is rapidly catching up with the West. In the tropics communities are forced to survive alongside the megaherbivores that are predominantly under control or extinguished from much of the developed world.
The most problematic animals for humans to live alongside are, arguably, elephants. Throughout much of elephant range in Asia and Africa, remaining elephant habitat is in the process of significant encroachment by humans, often with a front of edible crops that are highly preferred by such herbivores. These agricultural lands, on the edge of primary elephant habitat, can make for easily accessible resources for wildlife, and little is put in place to dissuade resident elephant herds from utilizing this resource. As a result, human-wildlife conflict is becoming a serious issue, and threatens the livelihoods of many of those living alongside megafauna, not to mention the threats to local elephant populations from retaliatory killings. Mitigating such situations often relies on translocating `problem animals’. In their paper, de la Torre et al. (2021) clearly show that such techniques are flawed. The overlap with elephants, in the peripheral agricultural landscapes, makes highly nutritious and abundant crops a readily available resource for elephants. Therefore, unless a constant stream of elephant translocations is a financially viable and sustainable solution, smarter methodologies need to be employed to create a model of coexistence where humans and elephants can live harmoniously together over the long term.
Hahn, N. R., Wall, J., Denninger-Snyder, K., Goss, M., Sairowua, W., Mbise, N., Estes, A. B., Ndambuki, S., Mjingo, E. E., Douglas-Hamiliton, I., Wittemyer, G.Risk perception and tolerance shape variation in agricultural use for a transboundary elephant population (2022)
Journal of Animal Ecology, 91, 112– 123. https://doi.org/10.1111/1365-2656.13605 show/hide summaryAbstract
To conserve wide-ranging species in human-modified landscapes, it is essential to understand how animals selectively use or avoid cultivated areas. Use of agriculture leads to human–wildlife conflict, but evidence suggests that individuals may differ in their tendency to be involved in conflict. This is particularly relevant to wild elephant populations.
We analysed GPS data of 66 free-ranging elephants in the Serengeti-Mara ecosystem to quantify their use of agriculture. We then examined factors influencing the level of agricultural use, individual change in use across years and differences in activity budgets associated with use. Using clustering methods, our data grouped into four agricultural use tactics: rare (12.8%; 9%).
Sporadic and seasonal individuals represented two-thirds (67%) of recorded GPS fixes in agriculture, compared to 32% from habitual individuals. Increased agricultural use was associated with higher daily distance travelled and larger home range size, but not with age or sex. Individual tactic change was prevalent and the habitual tactic was maintained in consecutive years by only five elephants. Across tactics, individuals switched from diurnal to nocturnal activity during agricultural use, interpreted as representing similar risk perception of cultivated areas. Conversely, tactic choice appeared to be associated with differences in risk tolerance between individuals.
Together, our results suggest that elephants are balancing the costs and benefits of crop usage at both fine (e.g. crop raid events) and long (e.g. yearly tactic change) temporal scales. The high proportion of sporadic and seasonal tactics also highlights the importance of mitigation strategies that address conflict arising from many animals, rather than targeted management of habitual crop raiders.
Our approach can be applied to other species and systems to characterize individual variation in human resource use and inform mitigations for human–wildlife coexistence.
Uno, K. T., Fisher, D. C., Wittemyer, G., Douglas-Hamilton, I., Carpenter, N., Omondi, P., Cerling, T. E.Forward and inverse methods for extracting climate and diet information from stable isotope profiles in proboscidean molars (2020)
Quaternary International, Volume 557, 2020, Pages 92-109, ISSN 1040-6182
https://doi.org/10.1016/j.quaint.2020.06.030 show/hide summaryAbstract: Intratooth stable isotope profiles in enamel provide time series of dietary and environmental information that if correctly interpreted, serve as archives of seasonal variability in past environments. A major challenge in interpreting these profiles arises from time averaging imparted by enamel mineralization and developmental geometry, whereby the primary (δ13C or δ18O) input signal is attenuated and shifted, which can potentially lead to incorrect interpretations of the magnitude or frequency of seasonal variability. Several forward and inverse models have been developed to reconstruct the primary input signal from intratooth profiles in continuously growing teeth. Here the models developed by Passey and Cerling (2002) and Passey et al. (2005) are extended to molars of Elephantinae, which grow over a long but finite interval of time. Proboscidean molars are particularly attractive for intratooth profiles because they may contain a decade or more of information and they are often well preserved in the fossil record because of their thick enamel and large size.
Forward model parameters are established using histological analysis of molar thin sections of extant African elephants (Loxodonta africana) and a mammoth (Mammuthus columbi) and by micro-CT analysis of L. africana molar plates. The density of immature enamel is about 65% of the final density of mature enamel. The appositional length varies from approximately 35 to 55 mm, and the maturation length is about 70 mm. Histological methods are used to determine crown formation time (CFT) in elephant and mammoth molar plates. CFT for the elephant and mammoth molar plates studied in thin section are about 5–6 years and 11 years, which translate to mean growth rates of about 21 mm/year and 16 mm/year, respectively.
Coeval molar and tusk profiles from a zoo elephant are compared. The tusk isotope profile serves as a proxy for the primary input signal, and thus provides an opportunity to evaluate the forward and inverse models. The results from the zoo elephant profiles demonstrate that the inverse model accurately reconstructs the amplitude and overall structure of the primary input signal. Inverse model results of mammoth molar profiles show double the range of δ13C in measured enamel profiles. Inversion model results illustrate that improved reconstruction of the primary input signal can lead to more accurate interpretations of the seasonal variability of diet and body water and by extension, vegetation and precipitation in past environments.
Weideman, H., Stewart, C., Parham, J., Holmberg, J., Flynn, K., Calambokidis, J., Paul, D, B., Bedetti, A., Henley, M., Lepirei, J., Pope, F.Extracting identifying contours for African elephants and humpback whales using a learned appearance model (2020)
2020 IEEE Winter Conference on Applications of Computer Vision (WACV) show/hide summaryAbstract
This paper addresses the problem of identifying individual animals in images based on extracting and matching contours, focusing in particular on the trailing edges of
humpback whale flukes and the outline of the ears of African savanna elephants. A coarse-grained FCNN is learned to isolate the contour in an image, and a fine-grained FCNN is learned to provide more precise boundary information.
The latter is trained by generating synthetic boundaries from coarse, easily-extracted training data, avoiding tedious manual effort. An A* algorithm extracts the final contour, which is converted to set of digital curvature descriptors and matched against a database of descriptors
using local-naive Bayes nearest neighbors. We show that
using the learned fine-grained FCNN produces more accurate contours than using image gradients for fine localization, especially for elephant ears where the boundaries are
primarily texture. Matching using contours extracted using
the fine-grained FCNN improves top-1 accuracy from 80%
to 85% for flukes and 78% to 84% for ears.
Kinyanjui, M.W., Raja, N.R., Ewan J Brennan, E. J., King, L. E., Tiller, L. NLocal attitudes and perceived threats of human-elephant conflict: a case study at Lake Jipe, Kenya (2020)
Pachyderm No. 61 July 2019–June 2020 show/hide summaryAbstract
Natural habitats are rapidly being converted to cultivated croplands, and crop-raiding by wildlife threatens both wildlife conservation and human livelihoods worldwide. We combined movement data from GPS-collared elephants with camera-trap data and local reporting systems in a before–after-control-impact design to evaluate community-based strategies for reducing crop raiding outside Mozambique’s Gorongosa National Park. All types of experimental fences tested (beehive, chili, beehive and chili combined, and procedural controls) significantly reduced the number of times elephants left the Park to raid crops. However, placing beehive fences at a subset of key crossing locations reduced the odds that elephants would leave the Park by up to 95% relative to unfenced crossings, and was the most effective strategy. Beehive fences also created opportunities for income generation via honey production. Our results provide experimental evidence that working with local communities to modify both animal behavior and human attitudes can mitigate conflict at the human–wildlife interface.
Wittemyer, G., Daballen, D., Douglas-Hamilton, IDifferential influence of human impacts on age-specific demography underpins trends in an African elephant population (2021)
Ecosphere 12(8):e03720. 10.1002/ecs2.3720
https://doi.org/10.1002/ecs2.3720
August 2021 show/hide summaryAbstract
Diagnosing age-specific influences on demographic trends and their drivers in at-risk wildlife species can support the development of targeted conservation interventions. Such information also underpins understanding of life history. Here, we assess age-specific demography in wild African elephants, a species whose life history is marked by long life and extreme parental investment. During the 20-yr study, survival and its variation were similar between adults and juveniles in contrast to relationships found among many large-bodied mammals. Prospective analysis on age-specific Leslie matrices for females demonstrated survival is more influential than fecundity on λ, with sensitivity of both decreasing with age. Results aggregated by stage classes indicate young adults (9–18 yr) demonstrated the highest elasticity, followed by preparous juveniles (3–8 yr). Mature adults (36+ yr) had the lowest aggregate elasticity value. Retrospective analysis parameterized by data from the early and latter periods of the study, characterized by low then high human impact (faster and slower growth, respectively), demonstrated fecundity (particularly for adults; 19–35 yr) explained the greatest variation in λ observed during the period of low human impact, while survival (particularly juvenile and adult) was more influential during the high human impact period. The oldest females (mature adult stage) weakly influenced population growth despite demonstrating the highest fecundity and their behavioral importance in elephant society. Multiple regression models on survival showed the negative effects of human impacts and population size were the strongest correlates across sexes and ages. Annual rainfall, our metric for environmental conditions, was weakly informative. The presence of dependent young was positively correlated with survival for breeding females, suggesting condition-based mortality filtering during pregnancy. Notwithstanding the stabilizing effect of high juvenile survival on elephant population growth, demographic processes in elephants were similar to those shaping life history in other large herbivores. Implications of the study results with respect to the conservation of elephants and analysis of demographic impact of poaching are discussed, along with the study's relevance to theories regarding the evolution of life history and parental care.
Parker, J.M., Webb, C.T., Daballen, D., Goldenberg, S.Z., Lepirei, J., Letitiya, D., Lolchuragi, D., Leadismo, C., Douglas-Hamilton, I., Wittemyer, G.Poaching of African elephants indirectly decreases population growth through lowered orphan survival (2021)
Current Biology, 2021, ISSN 0960-9822,
https://doi.org/10.1016/j.cub.2021.06.091.
(https://www.sciencedirect.com/science/article/pii/S0960982221009209) show/hide summaryProlonged maternal care is vital to the well-being of many long-lived mammals.1 The premature loss of maternal care, i.e., orphaning, can reduce offspring survival even after weaning is complete.2, 3, 4, 5 However, ecologists have not explicitly assessed how orphaning impacts population growth. We examined the impact of orphaning on population growth in a free-ranging African elephant population, using 19 years of individual-based demographic monitoring data. We compared orphan and nonorphan survival, performed a sensitivity analysis to understand how population growth responds to the probability of being orphaned and orphan survival, and investigated how sensitivity to these orphan parameters changed with level of poaching. Orphans were found to have lower survival compared to nonorphaned age mates, and population growth rate was negatively correlated with orphaning probability and positively correlated with orphan survival. This demonstrates that, in addition to its direct effects, adult elephant death indirectly decreases population growth through orphaning. Population growth rate’s sensitivity to orphan survival increased for the analysis parameterized using only data from years of more poaching, indicating orphan survival is more important for population growth as orphaning increases. We conclude that orphaning substantively decreases population growth for elephants and should not be overlooked when quantifying the impacts of poaching. Moreover, we conclude that population models characterizing systems with extensive parental care benefit from explicitly incorporating orphan stages and encourage research into quantifying effects of orphaning in other social mammals of conservation concern.
Mortimer B., Walker J. A., Lolchuragi D. S., Reinwald M., Daballen DNoise matters: elephants show risk-avoidance behaviour in response to human-generated seismic cues (2021)
Proc. R. Soc. B.2882021077420210774
http://doi.org/10.1098/rspb.2021.0774 show/hide summaryAbstract
African elephants (Loxodonta africana) use many sensory modes to gather information about their environment, including the detection of seismic, or ground-based, vibrations. Seismic information is known to include elephant-generated signals, but also potentially encompasses biotic cues that are commonly referred to as ‘noise’. To investigate seismic information transfer in elephants beyond communication, here we tested the hypothesis that wild elephants detect and discriminate between seismic vibrations that differ in their noise types, whether elephant- or human-generated. We played three types of seismic vibrations to elephants: seismic recordings of elephants (elephant-generated), white noise (human-generated) and a combined track (elephant- and human-generated). We found evidence of both detection of seismic noise and discrimination between the two treatments containing human-generated noise. In particular, we found evidence of retreat behaviour, where seismic tracks with human-generated noise caused elephants to move further away from the trial location. We conclude that seismic noise are cues that contain biologically relevant information for elephants that they can associate with risk. This expands our understanding of how elephants use seismic information, with implications for elephant sensory ecology and conservation management.
Okita-Ouma, B., Koskei, M., Tiller, L., Lala, F., King, L., Moller, R., Amin, R. and Douglas-Hamilton, I.Effectiveness of wildlife underpasses and culverts in connecting elephant habitats: a case study of new railway through Kenya’s Tsavo National Parks (2021)
Afr J Ecol. https://doi.org/10.1111/aje.12873 show/hide summaryAbstract
Transportation networks can be a major impediment to wildlife movements. We assessed the use of wildlife underpasses and culverts along a newly constructed railway in Kenya's Tsavo National Parks by African elephants (L. africana). We collared ten elephants with GPS satellite transmitters within 20 km of the railway in March 2016 and analysed their movement data to March 2019. Eight elephants used the underpasses although one did not cross the adjacent highway. The remaining two neither used the underpasses nor crossed the highway despite ranging in the vicinity. Their median speed significantly increased to 0.65 km/hr from 0.45 km/hr before crossing the railway, then slowed to 0.32 km/hr after crossing. Females in family groups moved faster than the lone bulls when using the underpasses. Seventy-eight per cent of all crossings made were at night. The fast speeds and the nocturnal patterns are behavioural responses of elephants in risky landscapes or under stress. Disturbance from vehicles traffic on the adjacent highway and from newly developed human settlements may have limited use of underpasses. Wildlife crossing structures, signage and speed bumps along the highway; relocation of the illegal human settlements; and inter-agency coordination are requisites for enhancing Tsavos' elephant habitat connectivity.
Hart, J., Gobush, K., Maisels, F., Wasser, S., Okita-Ouma, B., & Slotow, R.African forest and savannah elephants treated as separate species (2021)
Oryx , Volume 55 , Issue 2 , March 2021 , pp. 170 - 171
DOI: https://doi.org/10.1017/S0030605320001386 show/hide summaryThe African Elephant Specialist Group (AfESG) of IUCN will now treat African elephants as two species: the forest elephant Loxodonta cyclotis and the savannah elephant Loxodonta africana. This will be reflected in IUCN's Red List assessment update for African elephants, and in the next iteration of the African Elephant Status Report, both to be published in 2021. This concurs with Wilson & Reader (Mammal Species of the World, 2005), the primary IUCN reference on mammalian taxonomy, Wittemyer (in Handbook of the Mammals of the World, 2011), and Tassy & Shoshani (in Mammals of Africa, 2013).
Wall, J., Wittemyer, G., Klinkenberg, B., LeMay, V., Blake, S., Strindberg, S., Henley, H., Vollrath, F., Maisels, F., Ferwerda, J., Douglas-Hamilton, I.Human footprint and protected areas shape elephant range across Africa (2021)
Current Biology 31, 1–9, June 7, 2021
DOI:https://doi.org/10.1016/j.cub.2021.03.042
show/hide summarySummary
Over the last two millennia, and at an accelerating pace, the African elephant (Loxodonta spp. Lin.) has been threatened by human activities across its range.1, 2, 3, 4, 5, 6, 7 We investigate the correlates of elephant home range sizes across diverse biomes. Annual and 16-day elliptical time density home ranges8 were calculated by using GPS tracking data collected from 229 African savannah and forest elephants (L. africana and L. cyclotis, respectively) between 1998 and 2013 at 19 sites representing bushveld, savannah, Sahel, and forest biomes. Our analysis considered the relationship between home range area and sex, species, vegetation productivity, tree cover, surface temperature, rainfall, water, slope, aggregate human influence, and protected area use. Irrespective of these environmental conditions, long-term annual ranges were overwhelmingly affected by human influence and protected area use. Only over shorter, 16-day periods did environmental factors, particularly water availability and vegetation productivity, become important in explaining space use. Our work highlights the degree to which the human footprint and existing protected areas now constrain the distribution of the world’s largest terrestrial mammal.9,10 A habitat suitability model, created by evaluating every square kilometer of Africa, predicts that 18,169,219 km2 would be suitable as elephant habitat—62% of the continent. The current elephant distribution covers just 17% of this potential range of which 57.4% falls outside protected areas. To stem the continued extirpation and to secure the elephants’ future, effective and expanded protected areas and improved capacity for coexistence across unprotected range are essential.
Ihwagi, F.W., Chira, R.M., Kironchi, G., Vollrath, F. and Douglas-Hamilton, I.Rainfall pattern and nutrient content influences on African elephants’ debarking behaviour in Samburu and Buffalo Springs National Reserves, Kenya (2021)
African Journal of Ecology, 50, 152-159.
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2028.2011.01305.x show/hide summaryAbstract
The magnitude of debarking by elephants was investigated in Samburu and Buffalo Springs National Reserves. About 1617 plants were monitored for debarking intensities for 6months spanning through dry and wet seasons. Debarking indices ranged from no debarking at all during the wet months to complete stem girding at the height of the dry season. A negative correlation was found between rainfall and debarking indices. It was hypothesized that nutrient content of the bark influenced the magnitude to which trees were debarked. Bark samples were collected from least, moderate and intensely debarked plants throughout the 6 months. These were analysed for cal- cium (Ca), sodium (Na), phosphorus (P), magnesium (Mg), potassium (K), nitrogen (N), iron (Fe), copper (Cu), man- ganese (Mn) and zinc (Zn). Significant positive correlations were found between debarking intensity and each of the nutrients N [crude protein (CP)], P, K and Zn. Bark was found to be richest in CP and Calcium. Neutral detergent fibre content was on average 67%. Monthly variations in nutrient composition were minimal. Acacia elatior, the most preferred species had significantly higher quantities of each of the four elements N, P, K and Zn than Acacia tortilis, the second most preferred woody species.
Tiller, L.N., Humle, T., Amin, R., Deere, N.J., Lago, B.O., Leader-Williams, N., Sinoni, F.K., Sitati, N., Walpole, M., Smith, R.J.Changing seasonal, temporal and spatial crop-raiding trends over 15 years in a human-elephant conflict hotspot (2021)
Biological Conservation
Volume 254, February 2021, 108941
https://doi.org/10.1016/j.biocon.2020.108941 show/hide summaryHuman-wildlife conflict is increasing due to rapid natural vegetation loss and fragmentation. We investigated seasonal, temporal and spatial trends of elephant crop-raiding in the Trans Mara, Kenya during 2014–2015 and compared our results with a previous study from 1999 to 2000. Our results show extensive changes in crop-raiding patterns. There was a 49% increase in incidents between 1999 -2000 and 2014–2015 but an 83% decline in the amount of damage per farm. Crop-raiding went from highly seasonal during 1999–2000 to year-round during 2014–2015, with crops being damaged at all growth stages. Additionally, we identified a new elephant group type involved in crop-raiding, comprising of mixed groups. Spatial patterns of crop-raiding also changed, with more incidents during 2014–2015 neighbouring the protected area, especially by bull groups. Crop-raiding intensity during 2014–15 increased with farmland area until a threshold of 0.4 km2 within a 1 km2 grid square, and farms within 1 km from the forest boundary, 2 km from village centres were most at risk of crop-raiding. In the last 20 years the Mara Ecosystem has been impacted by climate change, agricultural expansion and increased cattle grazing within protected areas. Elephants seem to have responded by crop-raiding closer to refuges, more frequently and throughout the year but cause less damage overall. While this means the direct economic impact has dropped, more farmers must spend more time protecting their fields, further reducing support for conservation in communities who currently receive few benefits from living with wildlife.
by Njoki Kibanya | Dec 15, 2020 | Research
”SHARE YOUR LOVE OF ELEPHANTS THIS GIVING SEASON WITH GIFTS THAT GIVE BACK TO NATURE. The holiday season is fast approaching! If you haven’t figured out what to give your loved ones yet, don’t worry, we’ve got you covered! Ivory Ella For the elephant lover in your...
Troup, G., Doran, B., Au, J., King, L.E., Douglas-Hamilton, I., Heinsohn, R.Movement tortuosity and speed reveal the trade-offs of crop raiding for African elephants (2020)
Animal Behaviour 168 (2020) 97e108
https://doi.org/10.1016/j.anbehav.2020.08.009 show/hide summaryAnimals living in heterogeneous landscapes are often faced with making a trade-off between maximizing foraging success and avoiding risk. Using high-resolution GPS-tracking data, this study explored the fine-scale movement patterns and risk sensitivity of crop-raiding African elephants, Loxodonta africana, in the anthropogenic landscape of Tsavo, Kenya. We analysed patterns in the speed and tortuosity of elephant movements over the 24 h surrounding crop-raiding events and compared them with those of nonraiding elephants during corresponding periods. Crop-raiding elephants moved faster and straighter (less tortuously) with closer temporal proximity to farmland, which we argue reflects their increased intensity of risk avoidance behaviours in response to approaching humans. Once inside farmland, elephants appeared to reduce movements associated with risk avoidance to forage intensively on crops, decreasing their speed and reducing the likelihood of moving in straight lines while crop raiding. These results highlight trade-offs in the fine-scale movement patterns of elephants living in anthropogenic landscapes with differing levels of habitat quality and exposure to humans, providing new insight into how they perceive the risks associated with crop raiding.
van de Water, A., King, L. E., Arkajak, R., Arkajak, J., van Doormaal, N., Ceccarelli, V., Sluiter, L., Doornwaard, S. M., Praet, V., Owen, D., Matteson, K.Beehive fences as a sustainable local solution to human‐elephant conflict in Thailand (2020)
Conservation Science and Practice. 2020;e260
https://doi.org/10.1111/csp2.260 show/hide summaryAbstract
As human‐elephant conflict (HEC) increases, a better understanding of the human dimensions of these conflicts and non‐violent mitigation methods are needed to foster long‐term coexistence. In this study, we conducted household questionnaires (n = 296) to assess the prevalence of HEC and attitudes towards elephants in four rural villages in Thailand. In addition, we evaluated a pilot beehive fence as a sustainable solution for HEC. The majority of the households reported seeing or hearing elephants near their property at least once a week (84.9%) and experienced negative impacts from elephants in the last 5 years, (81.0%). The beehive fence deterred 88.4% of individual elephants (n = 155) and 64.3% of elephant groups (n = 28) that approached the fence. Most elephants (70.7%) exhibited behaviors suggesting heightened attentiveness or alarm. The farm owner reported economic and social benefits of the beehive fence. By contributing to farmer income and reducing crop damage caused by wild elephants, beehive fencing may provide an important locally‐managed complement to regional HEC mitigation methods.
Butler, K., M.Behaviour and crop-raiding patterns of Asian Elephants (Elephas maximus): Can beehive fences help mitigate human-elephant conflict in Sri Lanka? (2020)
B.Sc.(Ecology and Sustainability) (Hons.), M. Env
A thesis submitted in total fulfillment of the requirements for the degree of Master of Philosophy (Environmental Science) Faculty of Science School of
Environmental and Life Sciences University of Newcastle New South Wales, Australia August 2019 show/hide summaryHuman-elephant conflict (HEC) in the form of crop-raiding, is a major conservation challenge to the
long-term survival of elephant populations, simultaneously threatening the livelihoods and personal
safety of people living in proximity to elephants. The widespread problem of HEC has led to a great
deal of research into the causes, consequences and predictors of elephant crop-raiding activity.
However, despite similarities across HEC situations, site-specific differences are also apparent.
Furthermore, most studies focus on one facet of HEC when it is a complex issue requiring
understanding of local elephant behaviour, identification of the characteristics and patterns of cropraiding at the local scale, and careful implementation and monitoring of mitigation strategies.
In this study, I selected a region of Sri Lanka experiencing high levels of HEC and sought to provide an
in-depth assessment of the site-specific situation generated over a three-year period. Specifically, we
aimed to: identify general patterns of behaviour occurring in local areas representing differing levels
of anthropogenic disturbance to elephants; profile patterns and predictors of crop-raiding activity in
a village heavily impacted by HEC; and test the effectiveness of beehive fencing as an Asian elephant
deterrent tool.
First, I provide initial evidence that elephants inhabiting areas of ‘medium’ level anthropogenic
disturbance outside of protected boundaries, interrupt feeding and increase ‘reactive’ behaviours
such as smelling and holding the ‘vigilance’ posture in response to immediate anthropogenic threats
in the environment. In the absence of any known disturbances, there was no difference in general
behaviours of male or female elephants between the two risk zones. Secondly, I show that elephant
crop-raiding in Dewagiriya Village occurs year-round and follows no clear seasonal patterns. Similar to
other HEC situations, male elephants are the predominant crop-raiders, and crop-raiding occurs
almost exclusively at nights. Within-site variations in crop-raiding intensity were also identified, with
properties closest to water tanks and forest habitat the most vulnerable. Finally, our three-year
beehive fence trial showed that households using beehive fences around their gardens had
significantly less elephant visits into their gardens then households without. Still, difficulties in
attracting natural colonies, poor honey production, set-up costs, and farmer motivations were barriers
to success.
This study contributes to the general body of knowledge on elephant behaviour in anthropogenically
influenced contexts, and specifically on patterns of crop-raiding and mitigation efforts. Further
research into the potential of beehive fences as an Asian elephant deterrent, preferably in a location
more amenable to beekeeping, would help to determine the value of expanding this technique further
in Sri Lanka, and elsewhere in Asia.
Bastille‐Rousseau, G., Wittemyer, G.Characterizing the landscape of movement to identify critical wildlife habitat and corridors (2020)
Conservation Biology, Volume 0, No. 0, 1–14
© 2020 Society for Conservation Biology
DOI: 10.1111/cobi.13519 show/hide summaryLandscape planning that ensures the ecological integrity of ecosystems is critical in the face of rapid human‐driven habitat conversion and development pressure. Wildlife tracking data provide unique and valuable information on animal distribution and location‐specific behaviors that can serve to increase the efficacy of such planning. Given the spatiotemporal complexity inherent to animal movements, the interaction between movement behavior and a location is often oversimplified in commonly applied analyses of tracking data. We analyzed GPS‐tracking‐derived metrics of intensity of use, structural properties (based on network theory), and properties of the movement path (speed and directionality) with machine learning to define homogeneous spatial movement types. We applied our approach to a long‐term tracking data set of over 130 African elephants (Loxodonta africana ) in an area under pressure from infrastructure development. We identified 5 unique location‐specific movement categories displayed by elephants, generally defined as high, medium, and low use intensity, and 2 types of connectivity corridors associated with fast and slow movements. High‐use and slow‐movement corridors were associated with similar landscape characteristics associated with productive areas near water, whereas low‐use and fast corridors were characterized by areas of low productivity farther from water. By combining information on intensity of use, properties of movement paths, and structural aspects of movement across the landscape, our approach provides an explicit definition of the functional role of areas for movement across the landscape that we term the movescape . This combined, high‐resolution information regarding wildlife space use offers mechanistic information that can improve landscape planning.
Lamprey, R., Ochanda, D., Brett, R., Tumwesigye, C., Douglas-Hamilton, I.Cameras replace human observers in multi-species aerial counts in Murchison Falls, Uganda (2020)
Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London
https://zslpublications.onlinelibrary.wiley.com/doi/full/10.1002/rse2.154
doi: 10.1002/rse2.154 show/hide summaryAbstract
Wildlife counts in Africa and elsewhere are often implemented using light aircraft with ‘rear-seat-observer’ (RSO) counting crews. Previous research has
indicated that RSOs often fail to detect animals, and that population estimates are therefore biased. We conducted aerial wildlife surveys in Murchison Falls Protected Area, Uganda, in which we replaced RSOs with high-definition ‘oblique camera count’ (OCC) systems. The survey area comprises forests, woodlands and grasslands. Four counts were conducted in 2015–2016 using a systematic-reconnaissance-flight (SRF) strip-transect design. Camera inclination angles, focal lengths, altitude and frame interval were calibrated to provide imaged strips of known sample size on the left and right sides of the aircraft. Using digital cameras, 24 000 high-definition images were acquired for each count, which were visually interpreted by four airphoto interpreters. We used the standard Jolly II SRF analysis to derive population estimates. Our OCC estimates of the antelopes – hartebeest, Uganda kob, waterbuck and oribi – were, respectively, 25%, 103%, 97% and 2100% higher than in the most recent RSO count conducted in 2014. The OCC surveys doubled the 2014 RSO estimate of 58 000 Uganda kob to over 118 000. Population size estimates of elephants and giraffes did not differ significantly. Although all four OCC buffalo estimates were higher than the RSO estimates – in one count by 60% – these differences were not significant due to the clumped distribution and high variation in herd sizes, resulting in imprecise estimation by sampling. We conclude that RSO wildlife counts in Murchison have been effective in enumerating elephants and giraffe, but that many smaller species have not been well detected. We emphasize
the importance of 60 years of RSO-based surveys across Africa, but suggest that new imaging technologies are embraced to improve accuracy.
show/hide summaryAbstract
Conflict between humans and elephants is a notoriously complex problem requiring a detailed understanding
of the underlying patterns and processes in order to develop effective solutions. Advances in radio tracking
technologies have enabled researchers to examine in detail the ways in which tracked animals interact
with their environments. We analysed the movement patterns of an habitual crop raiding African elephant
(Loxodonta Africana) in the Amboseli ecosystem in southern Kenya. We identified three distinct patterns
of movement associated with instances of crop raiding; these were (1) opportunistic raiding, (2) purposeful
raiding, and (3) incidental raiding. The distinct characteristics of each of these movements serve to
demonstrate the differing circumstances under which elephants are brought into contact with agricultural
areas in their daily negotiations of the network of human land-use and protected areas. These findings
highlight the need to understand patterns of elephant movement and interactions with farmland in order to
craft management strategies that are effective in reducing levels of human-elephant conflict and promote
tolerance of elephants in rural communities.
Lamprey, R., Pope, F., Ngene, S., Norton-Griffith, M., Frederick, H., Okita-Ouma, B., Douglas-Hamilton, I.Comparing an automated high-definition oblique camera system to rear-seat-observers in a wildlife survey in Tsavo, Kenya: Taking multi-species aerial counts to the next level (2019)
Biological Conservation
https://doi.org/10.1016/j.biocon.2019.108243
show/hide summaryAbstract
In aerial wildlife counts, human observers often fail to detect animals. We conducted a multi-species sample-count in Tsavo National Park, Kenya, with traditional rear-seat-observers (RSOs) and an automated ‘oblique-camera-count’ (OCC) imaging system to compare estimates of 23 wildlife species derived from these two survey methods. An aerial Total Count of elephant, buffalo and giraffe, conducted a month previously, provided a further comparison. In the Tsavo Core (9560 km2), which harbours 80% of Tsavo’s elephants, the OCC system acquired 81 000 images for interpretation, of which 67 000 were obtained in parallel with RSO-counting along 3004 km of flight line. The Tsavo outer blocks (24 171 km2) were surveyed using the OCC system without RSOs to acquire a further 84 000 images. A random sample of 11 553 images were re-interpreted to derive species-specific probabilities of detection and correction factors. Using ‘Jolly II’, non-parametric and Bayesian analyses, and applying correction factors, we demonstrate that the RSOs did not detect 14% of elephants, 60% of giraffe, 48% of zebra and 66% of the large antelopes. For comparison, the Total Count observers did not detect 27% of elephant, 33% of buffalo, 57% of giraffe and 85% of carcasses. The OCC method raises the elephant population estimate to 16 681 ± 4047 (95% cl) from the 12 722 counted in the Total Count (Z = 1.917, p = .0276). These results suggest that RSO-based methods have significantly undercounted wildlife populations. To align with improved counting methods, previous results need to be re-calibrated.
Branco M.S, P.S., Merkle, J.A., Pringle, R.M., King, L., Tindall, T., Stalmans, M., Long, R.A.An experimental test of community-based strategies for mitigating human–wildlife conflict around protected areas (2019)
Conservation Letters. 2019;e12679. wileyonlinelibrary.com/journal/conl 1 of 8
https://doi.org/10.1111/conl.12679 show/hide summaryAbstract
Natural habitats are rapidly being converted to cultivated croplands, and crop-raiding by wildlife threatens both wildlife conservation and human livelihoods worldwide. We combined movement data from GPS-collared elephants with camera-trap data and local reporting systems in a before–after-control-impact design to evaluate community-based strategies for reducing crop raiding outside Mozambique’s Gorongosa National Park. All types of experimental fences tested (beehive, chili, beehive and chili combined, and procedural controls) significantly reduced the number of times elephants left the Park to raid crops. However, placing beehive fences at a subset of key crossing locations reduced the odds that elephants would leave the Park by up to 95% relative to unfenced crossings, and was the most effective strategy. Beehive fences also created opportunities for income generation via honey production. Our results provide experimental evidence that working with local communities to modify both animal behavior and human attitudes can mitigate conflict at the human–wildlife interface.
Taylor, L.A., Vollrath, F., Lambert, B., Lunn, D., Douglas-Hamilton, I., Wittemyer, G.Movement reveals reproductive tactics in male elephants (2019)
J Anim Ecol. 2019;00:1–11
DOI: 10.1111/1365-2656.13035 show/hide summaryAbstract
1. Long‐term bio‐logging has the potential to reveal how movements, and hence lifehistory
trade‐offs, vary over a lifetime. Reproductive tactics in particular may vary
as individuals' trade‐off current investment versus lifetime fitness. Male African
savanna elephants (Loxodona africana) provide a telling example of balancing body
growth with reproductive fitness due to the combination of indeterminate growth
and strongly delineated periods of sexual activity (musth), which results in reproductive
tactics that alter with age.
2. Our study aims to quantify the extent to which male elephants alter their movement
patterns, and hence energetic allocation, in relation to (a) reproductive state
and (b) age, and (c) to determine whether musth periods can be detected directly
from GPS tracking data.
3. We used a combination of GPS tracking data and visual observations of 25 male
elephants ranging in age from 20 to 52 years to examine the influence of reproductive
state and age on movement. We then used a three‐state hidden Markov
model (HMM) to detect musth behaviour in a subset of sequential tracking data.
4. Our results demonstrate that male elephants increased their daily mean speed and
range size with age and in musth. Furthermore, non‐musth speed decreased with
age, presumably reflecting a shift towards energy acquisition during non‐musth.
Thus, despite similar speeds and marginally larger ranges between reproductive
states at age 20, by age 50, males were travelling 2.0 times faster in a 3.5 times
larger area in musth relative to non‐musth. The distinctiveness of musth periods
over age 35 meant the three‐state HMM could automatically detect musth movement
with high sensitivity and specificity, but could not for the younger age class.
5. We show that male elephants increased their energetic allocation into reproduction
with age as the probability of reproductive success increases. Given that
older male elephants tend to be both the target of legal trophy hunting and illegal
poaching, man‐made interference could drive fundamental changes in elephant
reproductive tactics. Bio‐logging, as our study reveals, has the potential
both to quantify mature elephant reproductive tactics remotely and to be used to
institute proactive management strategies around the reproductive behaviour of
this charismatic keystone species.
Ihwagi, F.I., Skidmore, A.K., Wang, T., Bastille‐Rousseau, G., Toxopeus, A.G., Douglas‐Hamilton, I.Poaching Lowers Elephant Path Tortuosity: Implications for Conservation (2019)
The Journal of Wildlife Management 1–10; 2019; DOI: 10.1002/jwmg.21688 show/hide summaryABSTRACT
Poaching is the most immediate threat to African elephants (Loxodonta africana). Several continental‐wide surges in poaching have occurred since the latter half of the twentieth century, and the latest surge occurred from 2007 to 2012. The behavioral responses of elephants to poaching risk has not been studied widely because of a lack of high‐resolution movement data collected simultaneously with verified causes of mortality. We managed to collate 2 such datasets from 2004 to 2013. We studied the spatial‐temporal changes in movement behavior of 11 elephants in their core areas. Past studies have focused on elephant movement along corridors. We tested for the effect of poaching risk on their path straightness (i.e., tortuosity) while controlling for other environmental and human activities in the landscape using a set of generalized linear mixed models. To test for temporal variation of tortuosity, we used a time‐series linear model. Elephants turned less frequently while they were in poaching locations and at times with a high level of poaching activity, even though their speed did not change. The variation of tortuosity is a good indicator of differences in poaching risk as perceived by the elephants, which could complement patrol‐based anti‐poaching efforts by wildlife managers, especially in remote, inaccessible landscapes.
Goldenberg, S.Z, Oduor, S., Kinnaird, M.F., Daballen, D., Douglas‐Hamilton, I., Wittemyer, G.Evidence of strong spatial segregation between elephant subpopulations in the contiguous Laikipia–Samburu ecosystem in Kenya (2016)
African Journal of Ecology, 54(2), 261-264
https://doi.org/10.1111/aje.12310 show/hide summaryConnectivity within populations affects important ecological and evolutionary processes like gene flow, disease dynamics, and cultural exchange (Noad et al., 2000; McCallum & Dobson, 2002; Epps et al., 2005). Understanding connectivity is especially relevant in the context of conservation as landscape-level changes may alter wildlife movement. Such changes disproportionately affect wideranging species (Seidler et al., 2015), and those whose movement corridors are not protected (Didier et al., 2011). However, assessing connectivity across and within populations is difficult given the ephemeral and often cryptic nature of dispersal. Comparative, long-term data sets of known individuals can provide critical information and insights for wildlife managers and policymakers to determine whether and how subpopulations are connected. The Laikipia–Samburu elephant (Loxodonta africana Blumenbach) population is the second largest in Kenya with approximately 7415 individuals, primarily relying on range outside of governmentally protected areas (Poole et al., 1992; Litoroh et al., 2010). The 34,000 km2 Laikipia–Samburu ecosystem is a complex land use mosaic comprised of private, government and community lands (Thouless, 1995), which represent varying levels of risk to the region’s elephants (Ihwagi et al., 2015). The region is undergoing large-scale development projects (LAPSSET)
Goldenberg, S. Z., Wittemyer, G.Orphaning and natal group dispersal are associated with social costs in female elephants (2018)
Elsevier Animal Behaviour
Volume 143, September 2018, Pages 1-8
https://doi.org/10.1016/j.anbehav.2018.07.002 show/hide summarySocial environments are fundamental to fitness in many species. In disrupted societies, the loss of important partners may alter social environments for surviving individuals. African elephants, Loxodonta africana, have experienced age-selective mortality linked to the ivory trade, and the resulting social costs for surviving young elephants are unknown. In this study, we followed orphaned female elephants and nonorphaned counterparts in Kenya's Samburu and Buffalo Springs National Reserves to elucidate whether orphaning and related dispersal behaviour incur social costs. There were clear social differences between orphans and nonorphans, most notably in that orphans tended to receive more aggression than nonorphans. Dispersal from natal groups was a behaviour found exclusively among orphans. Differences in social environments of orphans that remained in their natal groups and those that dispersed were also found in the form of dispersed orphans receiving more aggression while feeding than those that remained in their natal group. Our results suggest that orphaning in elephants is associated with social costs, and that these costs are amplified for orphans that disperse from their natal groups. Future research should identify the relationship between the social costs of being an orphan and fitness, which may be important to the recovery of populations affected by the ivory trade and other forms of disruption.
Koskei M., Okita-Ouma B., Lala F., Mwazo A., Kibara D., Tiller L., King L., Pope F. & Douglas-Hamilton I.The effect of the new standard gauge railway (SGR) on elephant movement in Tsavo Ecosystem, Kenya (March 2016 – March 2018) (2018)
Save The Elephants & Kenya Wildlife Service show/hide summaryIn 2014, the Government of Kenya initiated construction of the Standard Gauge Railway (SGR) linking Kenya’s largest port city, Mombasa, and her capital city, Nairobi. The construction of the Mombasa – Nairobi SGR was completed and officially launched for use in June 2017. The SGR cuts through the 23,000 Km2 Tsavo National Parks comprising Tsavo East and Tsavo West National Parks, and is home to the largest single elephant population in Kenya, numbering approximately 13,000 animals (2017 total aerial count) as well as other mammalian species.
Save the Elephants (STE) in partnership with Kenya Wildlife Service (KWS) fitted radio tracking collars on ten Tsavo elephants in March 2016. The main objective of this project was to understand the potential impact of the new SGR and highways in Tsavo on elephant movement and the effectiveness of the mitigation measures put in place to maintain ecosystem connectivity. A further 20 radio tracking collars deployed in February 2018 is expected to enrich these data we are collecting. However, this report documents findings from the initial ten collars deployed in March 2016.
In this report, we explore movement patterns and hotspots of elephants’ use in relation to the new SGR and the Voi – Taveta highway after two years of tracking. The home ranges of some elephants crossing the SGR extends from Yatta plateau in Tsavo East to beyond Mkomazi National Park in Tanzania.
Out of the eight elephants collared along the SGR; six of them (some with their families), have managed to cross the SGR during the two years of monitoring. The two most frequently used SGR crossing points for the tracked elephants in Tsavo were the Maungu corridor and at the Manyani corridor. The two corridors are one of six SGR underpasses designed specifically for wildlife use. The monitoring of wildlife utilization of SGR crossing underpasses by KWS patrols teams have shown that, through direct animal signs such as footprints and dung, elephants are learning relatively quicker to use the underpasses than other wildlife species.
Movement patterns of the collared elephants also show that the erection of double electric fence, SGR fence and David Sheldrick Wildlife Trust’s fence at Ngutuni, has completely blocked elephant movements to the high-usage area between the SGR and the Mombasa highway. Elephants attempting to cross over the SGR and highway from Ngutuni Conservancy towards the Sagalla farms have also had their movements curtailed.
The monitoring of the SGR, on foot or by vehicle, for wildlife crossing shows that elephant movements have been greatly impacted by the fragmentation of the habitat and blocking of normal migration routes. Some of the tracked elephants spent more than a year moving up and down along the SGR, but were not able to cross it after two years. The analysis of the mean speed in elephant tracking data indicates that elephants are slower crossing the existing Mombasa highway than the new raised SGR.
One of the major challenge facing the underpass utilization by wildlife is the proliferation of illegal human settlements along the SGR and near the main underpasses. This applies especially to the Voi – Bachuma section of the SGR, around Ndara and Maungu areas. The other notable threat to wildlife use of the SGR underpasses is the high influx of livestock recorded going into the park through those underpasses.
We also identified in this study that elephants are attracted to the borrow pits not completely filled after construction, along the SGR. The borrow pits collects and avail water to elephants and other wildlife species, but may expose them to potential train and vehicle accidents.
show/hide summaryABSTRACT
Honeybees are globally recognized for products such as honey and wax, and as valuable pollinators of both natural ecosystems and agricultural crops. However, studies have shown that climate variability and human - driven environmental changes are affecting the population dynamics of
the bees and their preferred fodder plants and subsequently, the socio-economic benefits of the honey bees. Although the decline in the honey bee and their associated plants may be attributed to all these factors combined, which rarely acts in isolation, previous studies in honey bee pollinator
and pollination interactions have rarely considered they together decline. This study therefore aimed to investigate the effects of the combined and interactive factors of climate and anthropogenic environmental change on the bee forage diversity, plant-honey bee pollinators’
interactions and bee keeping activity. The project interviewed 25 respondents of smallholder farmer/beekeeper households using a semi-structured questionnaire. The beekeepers and other key informants in the study site were asked to report on important constrains and opportunities for
beekeeping. Transect walks were conducted during the wet and dry season to determine the diversity of bee forage plants in twelve (12) randomly selected farms lined while bee population was determined by observing the beehive fences. Rainfall data collected in the same period were
subsequently built into a statistical model to predict relationship between diversity of bee forage plants and bee population using precipitation data. Descriptive statistics were used to analyze quantitative data and percentages for the qualitative data. The major findings of the study indicated
that there was a positive relationship between the warmer and drier weather conditions experienced during dry season and the lower diversity of bee forage plants [Bee forage plants (FP) (at confidence range) = 12.425 + 0.8757M, p-value; R2 = 0.8]. Similarly, there was also a positive
correlation between the honey bee (B) population size and the availability of bee forage plants [(FB) = 17.116 + 0.6365 P, R2 = 0.55]. The findings indicated that warmer and drier conditions in dry season were accompanied with about 57% decline in the diversity of the honey bee fodder
(floral resources) and about 36% decline in honeybee population. The most important plant families observed to be used by honey bee as fodder included Acanthaceae, Labiatae, Rubiaceae and Compositae. Among the plant species in the understory community, Tridax procumbens,
Digera muricata and Justicia flava were found to be among the most important to honey bees. Hence, this study show clear evidence of a link between climate variability, diversity of honey bee fodder plants and honey bee population. The findings of this study recommends that beekeeping
farmers in the study site should give consideration to the season long fodder resources needed by bees in dry season and ensure connectivity of natural habitats in farming areas, so that bees’ can more easily disperse and easily collect floral resources essential in response to changing climates.
Johnson, A. S.The Effects of Tactile and Visual Deterrents on Honey Badger Predation of Beehives (2018)
MSc Thesis Submitted in partial fulfillment of the requirements for the degree of Master of Arts Animal Behavior and Conservation, Hunter College The City University of New York show/hide summaryAbstract
As human and elephant populations grow in Kenya so does human-elephant conflict. One of the most substantial contributors to this conflict, the crop-raiding behavior of elephants (Loxodonta africana), is alleviated through the use of The Elephants and Bee Project's beehive fences. A threat to these beehives are the honey badgers (Mellivora capensis) who try to obtain honey, causing damage to the hive and the colony to abscond. The objective of this study was to improve the effectiveness of these beehive fences through identifying and testing novel honey badger deterrent methods. On-farm experiments in Taita Taveta County, Kenya were conducted to determine if visual and tactile deterrents could reduce the frequency and severity of honey badger hive predation of the hives compared to a previously used method. Prior to the start of the study, 77.1% percent of hives absconded within a week following a honey badger attack. After the addition of the novel deterrents (motion activated light deterrent, cone baffle, and hive cage deterrent), only 11.1% percent of the hives attacked by honey badgers absconded, suggesting the deterrents effectively reduced the amount of successful honey badger attacks. No relationship was found between deterrent type and amount of damage, nor for the duration and deterrent type. All deterrent methods effectively prevented honey badgers from raiding hives with variance in the success rates and economic feasibility. This project complemented the Elephants and Bee Project's ongoing research by providing much-needed insight into the role honey badger deterrents could play in preventing damage to the elephant deterring beehive fences. This research purposes deterrent recommendations based on cost effectiveness and ability to reduce honey badger raiding. These deterrents not only reduce honey badger hive raiding but also to improve human-honey badger coexistence as well as human-elephant coexistence.
show/hide summaryThe illegal killing of elephants, i.e. poaching and human-elephant related mortality, is the greatest immediate threats to elephants. They have led to declining of many populations of elephants in Africa. The Monitoring of Illegal Killing of Elephants (MIKE) program of the Convention on International Trade in Endangered Species (CITES) was set up in the year 2002 as a framework of monitoring trends in illegal killing in 57 African sites. MIKE program seeks to establish the relationships between the levels of illegal killing of elephants and various possible explanatory variables within and beyond the monitoring sites. The effort in implementing MIKE program vary from site to site, and to make the results comparable; a metric referred to as the Proportion of Illegally Killed Elephants (PIKE) out of all recorded deaths in a site has been adopted as the standard measure of severity of illegal killing.
Loss of habitat due to the expansion of agriculture and infrastructural developments are the largest long-term threats to elephants. The migratory corridors of elephants and other wildlife in many landscapes have been cut off. The majority of wildlife resides outside formally protected areas on private and community lands. In the landscapes shared by wildlife and humans, competition for resources influences the spatial-temporal distributions of wildlife. Efforts to win the goodwill of private and community landowners regarding hosting of wildlife on their lands are ongoing in many sites across the elephant range. Despite the numerous studies on the nature of risk faced by elephants, fewer studies have focused on the behavioural adaptations of elephants living in those risky landscapes.
This thesis sought to understand the site level drivers of illegal killing and how elephants adapt to the threat in Africa’s most intensively monitored site, the Laikipia-Samburu MIKE in northern Kenya. Using field verified records of causes of elephant mortality, the distribution of live elephants, and, the cadastral attributes of land parcels in the ecosystem, the thesis established that land use type is the most important correlate of levels of illegal killing and not its ownership. The study analyses the movement of elephants at hourly, day and night, and overall 24 hr activity cycle in relation to the spatial and temporal variation of the levels of illegal killing. Past studies have given a lot of attention to movement behaviour along corridors. The research in this thesis focusses on movement within core areas. At the hourly time interval, the research showed that elephants walk with lower tortuosity when they are in core areas with higher levels of illegal killing, i.e., higher risk. The study found that elephants move more at night when they are in core areas with higher risk, than when they are in safer core areas. Based on this finding, the research presents a new metric for inferring the levels of risk, i.e., night-day sped ratio. When elephants move from a core area to another one with a different level of risk, they alter their daily activity pattern to include a longer resting phase during the mid-day hours, and this is even more pronounced in core areas closest to permanent human settlements. The study found that as a result of the alteration of activity cycle within 24-hour periods, elephants loose approximately one hour of activity time.
The results have the potential use as a remote means of assessing the spatial and temporal variation of risk by analysing elephant movement behaviour remotely thus complimenting patrol based anti-poaching efforts. The study provides new insight into the ecology of elephants living in fear. The confirmed increase of night-time movement potentially predisposes calves to the savannah predators, who are more active at night.
Weinmann, S.Impacts of Elephant Crop-Raiding on Subsistence Farmers and Approaches to Reduce Human- Elephant Farming Conflict in Sagalla, Kenya (2018)
Thesis presented in partial fulfillment of the requirements for the degree of Master of Science In Resource Conservation, International Conservation and Development The University of Montana, Missoula, MT show/hide summaryABSTRACT
As human and elephant populations grow in Kenya, elephants increasingly leave parks to eat farmers’ crops while foraging, which creates epicenters of human-elephant conflict (HEC). This conflict compromises farmers’ food and economic security, impedes elephant conservation initiatives, and threatens the safety of humans and elephants. In recent years, the situation has been exacerbated by drought and national-level infrastructure development that bisects key elephant habitat. Although researchers have widely studied elephant populations, few have examined the cultural, economic, and emotional effects of HEC on subsistence farmers. This
project utilized a mixed methods approach to address this knowledge gap and understand the lived experiences of Wasaghala farmers in Lower Sagalla, Kenya. These farmers live adjacent to Kenya’s largest elephant population in Tsavo East National Park and regularly experience elephant crop-raiding. This research was conducted in partnership with Save the Elephants, a non-profit that studies elephant-crop raiding in Lower Sagalla. This project complements their research by facilitating greater understanding of complex human-elephant interactions and providing insight into the role that agricultural crops play in elephant crop-raiding. Personal
interviews were conducted with a purposefully chosen sample of farmers, community leaders, and regional experts to understand their perspectives on cultural, agricultural, and economic dimensions of HEC in Lower Sagalla. Topics covered included regional history of HEC, impacts on farmers, elephant deterrent strategies, and farmer agricultural decision-making. Additional data were collected from an on-farm experiment that examined how crop palatability impacts elephant crop-raiding behavior. It aimed to determine if moringa and sunflowers are less palatable to elephants than maize, and if growing these crops can reduce crop loss due to
elephant crop-raiding. Results from all data concluded that HEC creates widespread suffering for farmers in Lower Sagalla, that they are unable to adequately address this issue on their own, and that there is a need for the development of novel HEC mitigation strategies. Additionally, results suggest that crop palatability influences elephant crop-raiding behavior and that growing crops that are less palatable to elephants, but beneficial to farmers, may play a role in reducing crop loss and increasing farmers’ economic and food security. The research concludes with
management recommendations to reduce elephant crop-raiding and improve human-elephant coexistence.
show/hide summaryThe Chinese ivory industry has been expanding tremendously, especially in the last five years. Illegal ivory imports are the largest in the world by weight and have been soaring; the wholesale price of raw tusks sold for carving has tripled since 2010; the number of official ivory carving factories has risen several-fold; the number of carvers is way up, the number of legal (licensed) retail outlets for elephant ivory has increased significantly as has the number of illegal (unlicensed) outlets selling elephant ivory; there has been a boom in customers for elephant ivory, both legal and illegal, both raw and worked, especially by collectors and investors in China; retail prices for ivory items have skyrocketed; and some businesspeople are optimistic about future economic benefits of trading in ivory.
Mortimer, B., Rees, W. L., Koelemeijer, P, and Nissen-Meyer, T.Classifying elephant behaviour through seismic vibrations (2018)
Current Biology. Volume 28, Issue 9, 7 May 2018, Pages R547-R548
https://doi.org/10.1016/j.cub.2018.03.062 show/hide summarySeismic waves — vibrations within and along the Earth’s surface — are ubiquitous sources of information. During propagation, physical factors can obscure information transfer via vibrations and influence propagation range [1]. Here, we explore how terrain type and background seismic noise influence the propagation of seismic vibrations generated by African elephants. In Kenya, we recorded the ground-based vibrations of different wild elephant behaviours, such as locomotion and infrasonic vocalisations [2], as well as natural and anthropogenic seismic noise. We employed techniques from seismology to transform the geophone recordings into source functions — the time-varying seismic signature generated at the source. We used computer modelling to constrain the propagation ranges of elephant seismic vibrations for different terrains and noise levels. Behaviours that generate a high force on a sandy terrain with low noise propagate the furthest, over the kilometre scale. Our modelling also predicts that specific elephant behaviours can be distinguished and monitored over a range of propagation distances and noise levels. We conclude that seismic cues have considerable potential for both behavioural classification and remote monitoring of wildlife. In particular, classifying the seismic signatures of specific behaviours of large mammals remotely in real time, such as elephant running, could inform on poaching threats.
show/hide summaryRepeated use of the same areas may benefit animals as they exploit familiar sites, leading to consistent home ranges over time that can span generations. Changing risk landscapes may reduce benefits associated with home range fidelity, however, and philopatric animals may alter movement in response to new pressures. Despite the importance of range changes to ecological and evolutionary processes, little tracking data have been collected over the long-term nor has range change been recorded in response to human pressures across generations. Here, we investigate the relationships between ecological, demographic and human variables and elephant ranging behaviour across generations using 16 years of tracking data from nine distinct female social groups in a population of elephants in northern Kenya that was heavily affected by ivory poaching during the latter half of the study. Nearly all groups—including those that did not experience loss of mature adults—exhibited a shift north over time, apparently in response to increased poaching in the southern extent of the study area. However, loss of mature adults appeared to be the primary indicator of range shifts and expansions, as generational turnover was a significant predictor of range size increases and range centroid shifts. Range expansions and northward shifts were associated with higher primary productivity and lower poached carcass densities, while westward shifts exhibited a trend to areas with higher values of primary productivity and higher poached carcass densities relative to former ranges. Together these results suggest a trade-off between resource access, mobility and safety. We discuss the relevance of these results to elephant conservation efforts and directions meriting further exploration in this disrupted society of a keystone species.
Sampson, C., McEvoy, J., Oo, Z. M., Chit, A. M., Chan, A.N., Tonkyn, D., et al.New elephant crisis in Asia—Early warning signs from Myanmar (2018)
PLoS ONE 13(3): e0194113. https://doi.org/10.1371/journal.pone.0194113 show/hide summaryIn the southern Bago Yoma mountain range in Myanmar, Asian elephants are being killed at a disturbing rate. This emerging crisis was identified initially through a telemetry study when 7 of 19 of collared elephants were poached within a year of being fitted with a satellite-GPS collar. Subsequent follow up of ground teams confirmed the human caused death or disappearance of at least 19 elephants, including the seven collared individuals, within a 35 km2 area in less than two years. The carcasses of 40 additional elephants were found in areas located across south-central Myanmar once systematic surveys began by our team and collaborators. In addition to the extreme rate of loss, this study documents the targeting of elephants for their skin instead of the more common ivory, an increasing trend in Myanmar. Intensive research programs focused on other conservation problems identified this issue and are now encouraging local authorities to prioritize anti-poaching efforts and improve conservation policies within the country. Myanmar represents one of the last remaining countries in Asia with substantial wildlands suitable for elephants. Increasing rates of human-elephant conflict and poaching events in this country pose a dire threat to the global population.
Bastille‐Rousseau, G., Wall, J., Douglas‐Hamilton, I., Wittemyer, G.Optimizing the positioning of wildlife crossing structures using GPS telemetry (2018)
J Appl Ecol. 2018;55:2055–2063. https://doi.org/10.1111/1365-2664.13117
First published: 06 February 2018 show/hide summaryAbstract
1. Development of transportation corridors has accelerated globally, with infrastructure projects being implemented across remote ecosystems, particularly in the tropics. Such developments can have negative impacts on wildlife and their ecosystems. The importance of wildlife crossing structures to mitigate adverse effects of such features is widely recognized, but the siting of and investment in crossing structures is contentious. Data on animal movement provide valuable, highly specific information for such processes, but can present analytical challenges and remain underutilized in planning mitigation efforts.
2. We develop two algorithms based on Integer Linear Programming to prioritize crossing points based on frequency of use or breadth of coverage among tracked individuals. These scenarios represent metrics likely to guide the planning of crossing structures, where the former may relate to the objective of minimizing vehicle‐animal collisions and the latter on maintaining ecosystem connectivity. We exemplify the algorithms through application on a tracking dataset from over 150 African elephants living near the proposed Lamu Port‐South Sudan‐Ethiopia‐Transport corridor. We explore the influence of sampling bias on outcomes and discuss considerations to guide the application process.
3. Given the generally open, unfenced nature of this ecosystem, recorded movements occurred throughout the system and a third of the corridor length in the ecosystem was intersected by recorded elephant movements. The selection of crossing structure locations and their impacts on elephants varied whether we used a subsample of elephant representative of local population density or total sample of monitored individuals. The two algorithms also selected for different crossing structure locations.
4. Synthesis and applications. Our work shows some of the challenges of using Global Positioning System telemetry in deciding where to put crossing structures and demonstrates the need to identify the type of constraints in the system and desired crossing structure characteristics a priori. We recommend managers carefully evaluate the presence of potential biases in their data. High‐resolution data combined with objective prioritization methods allow reasoned planning actions, but are often lacking during critical infrastructure planning stages. Given the limited budget already allocated to mitigation measures in most proposed developments, the tools developed and applied here can facilitate effective spatial planning.
Bastille-Rousseau G., Douglas-Hamilton I., Blake S., Northrup J.M., Wittemyer G.Applying network theory to animal movements to identify properties of landscape space use (2018)
Ecol Appl. 2018 Apr;28(3):854-864. doi: 10.1002/eap.1697. show/hide summaryAbstract
Network (graph) theory is a popular analytical framework to characterize the structure and dynamics among discrete objects and is particularly effective at identifying critical hubs and patterns of connectivity. The identification of such attributes is a fundamental objective of animal movement research, yet network theory has rarely been applied directly to animal relocation data. We develop an approach that allows the analysis of movement data using network theory by defining occupied pixels as nodes and connection among these pixels as edges. We first quantify node-level (local) metrics and graph-level (system) metrics on simulated movement trajectories to assess the ability of these metrics to pull out known properties in movement paths. We then apply our framework to empirical data from African elephants (Loxodonta africana), giant Galapagos tortoises (Chelonoidis spp.), and mule deer (Odocoileous hemionus). Our results indicate that certain node-level metrics, namely degree, weight, and betweenness, perform well in capturing local patterns of space use, such as the definition of core areas and paths used for inter-patch movement. These metrics were generally applicable across data sets, indicating their robustness to assumptions structuring analysis or strategies of movement. Other metrics capture local patterns effectively, but were sensitive to specified graph properties, indicating case specific applications. Our analysis indicates that graph-level metrics are unlikely to outperform other approaches for the categorization of general movement strategies (central place foraging, migration, nomadism). By identifying critical nodes, our approach provides a robust quantitative framework to identify local properties of space use that can be used to evaluate the effect of the loss of specific nodes on range wide connectivity. Our network approach is intuitive, and can be implemented across imperfectly sampled or large-scale data sets efficiently, providing a framework for conservationists to analyze movement data. Functions created for the analyses are available within the R package moveNT.
Save The ElephantsLiving in harmony with elephants (2016)
Save The Elephants Education Program show/hide summaryLiving in Harmony with Elephants (LIHWE) is a four-part manual
developed by Save the Elephants in collaboaration with Disney’s Animal
Kingdom that teaches students conservation education with the aims to
future wildlife ambassadors. Since it’s inception in 2012, LIHWE has
reached out to over 500 students within the Samburu Isiolo Conservation
Area (SICA). LIHWE is one of Save The Elephants (STE) Education
Program’s approaches that introduce young minds into the world of
elephants, delighting them in the species’ intelligence and diversity, and
we remain indebted to Disney’s Animal Kingdom educators for all the help
they provided to develop this manual.
The first lesson equips students with knowledge on elephant ecology,
exploring the species physiology, social interaction and its role in
modifying the savannah. Next, learners are introduced to the importance
of and threats to elephant habitats. The third lesson teaches learners how
to protect themselves, their livestock, manyattas from elephants and
while at it, securing a future for elephants and other wildlife.
Rasmussen, H.B.Reproductive tactics of male African savannah elephants (Loxodonta africana) (2005)
Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Oxford Michaelmas Term 2005 show/hide summaryThe present thesis investigates aspects of the reproductive strategy of male African savannah elephants (Loxodonata africana). The existence of, and differences between alternative conditional dependent reproductive tactics are evaluated using a combination of behavioural, endocrinological
and GPS tracking data and the age and tactic related success is measured using genetic paternity
analysis.
Hidden Markov Models were used as a probabilistic framework for analysing temporal changes in reproductively active and inactive periods based on shifts in association preferences of individuals. Distinct shifts between active and inactive periods were evident well before the onset of
the aggressive reproductive tactic of musth, seen in older dominant males, hence providing the first quantitative evidence for the previously suggested sexually active periods in non-musth males. The link between hormones and reproductive status and tactics were investigated using a new technique for non-invasive faecal analysis of hormones. A combined analysis of androgens (Epiandrosterone) and glucocorticoid (3a,11-oxo-CM) hormones in relation to age, reproductive state and musth signals confirmed previously reported elevated levels of androgens during periods
with temporal gland secretion and urine dribbling (Musth) but further showed that this increase is indeed linked to the presence of musth signals and not to the age of the individual. Androgen levels were generally increased during sexually active periods with a two-fold increase seen in active non-musth bulls and a four to six-fold increase in musth bulls. Contrary to expectations, increased glucocorticoids outputs were not seen in musth bulls but slightly elevated outputs were seen in active non-musth bulls. Brief peaks in glucocorticoids occurred immediately after physical fights and during periods of injuries. A general elevation of glucocorticoids was seen towards the end of the long dry season, a likely effect of ecological conditions. Behavioural changes and onset of musth signals occurred after an initial change in androgen levels suggesting that sex steroids may play an activiational role of sexually active periods as well as activation of the musth tactic within sexually active periods. Some evidence was found for increased androgen levels following encounters with receptive females, suggesting that such encounters may act as a “boosters vaccine” on androgen levels and hereby prolong active periods at times with high numbers of receptive females.
Both musth and sexually active non-musth (SAN) bulls reduced their foraging and walked more than sexually inactive bulls. However musth bulls had a higher time specific investment in reproduction compared to SAN bulls with musth bulls doubling their daily walking distance
compared to a 50% increase in SAN bulls. The (younger) non-musth bulls spent a larger part of the year sexually active (70%) compared to musth bulls (20%) hence SAN bulls have a tactic of prolonged low investment compared to the short and high investment seen in musth bulls,
emphasising the need for evaluating the duration of reproductive bouts when comparing overall investments between tactics. The youngest (non-musth) bull to sire offspring was 21 years but older musth bulls above 35 years had a much higher age specific reproductive success compared to bulls below 30 years.
However on a population level, bulls less than 30 years contributed 30% of the reproduction and 20-25% could be attributed to non-musth bulls.
Goldenberg, S. Z., WITTEMYER, G.Orphaned female elephant social bonds reflect lack of access to mature adults (2017)
SCIENTIFIC Reports | 7: 14408 | DOI:10.1038/s41598-017-14712-2 show/hide summaryCompensatory social behavior in nonhuman animals following maternal loss has been documented, but understanding of how orphans allocate bonding to reconstruct their social networks is limited.
Successful social integration may be critical to survival and reproduction for highly social species and, therefore, may be tied to population persistence. We examined the social partners involved in affiliative interactions of female orphans and non-orphans in an elephant population in Samburu, northern Kenya that experienced heightened adult mortality driven by drought and intense ivory poaching. We contrasted partners across different competitive contexts to gain insight to the influence of resource availability on social interactions. Though the number of partners did not differ between orphans and non-orphans, their types of social partners did. Orphans interacted with sisters and matriarchs less
while feeding than did non-orphans, but otherwise their affiliates were similar.
While resting under spatially concentrated shade, orphans had markedly less access to mature adults but affiliated instead with sisters, bulls, and age mates. Orphan propensity to strengthen bonds with non-dominant animals appears to offer routes to social integration following maternal loss, but lack of interaction with adult females suggests orphans may experience decreased resource access and associated fitness costs in this matriarchal society.
Cook, R.M., Parrini, F., King, L.E., Witkowski, E.T.F., Henley, M.DAfrican honeybees as a mitigation method for elephant impact on trees (2017)
Elsevier. Biological Conservation
Volume 217, January 2018, Pages 329-336
https://doi.org/10.1016/j.biocon.2017.11.024 show/hide summaryConservation managers are concerned about the impact that African elephants (Loxodonta africana) have on large tree species, necessitating the need for mitigation methods. Elephants actively avoid contact with African honeybees (Apis mellifera subsp. scutellata), staying clear of crop fields surrounded by beehive fence-lines and moving away from the sounds of swarming honeybees. Therefore, our objectives were to test whether the presence of beehives in trees influenced the likelihood of the tree receiving elephant impact, and compare these results to wire-netted (method used to prevent bark-stripping) and control (no treatment) trees. We selected a tree highly sought after by elephant, the marula tree (Sclerocarya birrea subsp. caffra), as our study species. We also assessed whether elephants avoided areas with marula trees containing beehives. Finally we provide a comparison of the financial costs of the beehive and wire-netting mitigation methods. We hung 50 active beehives in 50 trees, with 50 dummy beehives hung from branches on the opposite ends of each tree's main stem. We wire-netted another 50 trees and then assigned 50 trees as a control. Elephant impact on all 150 trees was measured prior to the addition of treatments and then post-treatment addition for 9 months. 54% of the control trees received some form of elephant impact, in comparison to 28% of the wire-netted trees and only 2% of the beehive trees. Wire-netting protected trees against bark-stripping but did not prevent elephants from breaking branches. Beehives proved to be the more effective mitigation method for elephant impact on large trees, although the presence of beehives did not prevent elephants from moving through the study site. The financial cost and maintenance required for the beehive mitigation method are greater than that of wire-netting, but the beehives can provide honey as an additive benefit on a small-scale usage level.
Tucker, M. A et alMoving in the Anthropocene: Global reductions in terrestrial mammalian movements (2018)
Science. 2018 Jan 26;359(6374):466-469. doi: 10.1126/science.aam9712. show/hide summaryAnimal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.
show/hide summaryIntroduction and background
This joint report by Save the Elephants and Kenya Wildlife Service summarizes preliminary findings of a long-term study on the effects of the Standard Gauge Railway (SGR), the Mombasa - Nairobi highway, the Voi - Taveta highway and other infrastructural developments on elephant movements and ecosystem connectivity in the Tsavo ecosystem. The extent of the utilization of the wildlife crossing structures, examples of exceptional elephant movements, the effect of water distribution on elephant movements, the effects of a recently constructed fence-line along the SGR are assessed and reported on here. The report concludes by listing several management recommendations. The study began in March 2016 when 10 elephants were fitted with satellite tracking collars for monitoring their movements in relation to these new infrastructure projects.
show/hide summaryExecutive Summary
From 2013 to 2016, Laos’s retail ivory market has expanded more rapidly than in any other country surveyed recently.
■ Laos has not been conforming with CITES regulations that prohibit the import and export of ivory. Since joining CITES in 2004, only one ivory seizure into Laos has been reported to the Elephant Trade Information System (ETIS).
■ Almost no arrests, let alone prosecutions and punishments, have been made of smugglers with ivory coming in or out of the country.
■ Most worked ivory for sale in Laos originates from elephants poached in Africa.
■ Ivory has also been entering Laos illegally from Thailand, as Thai traders have been offloading their ivory following the imposition of much stricter regulations there.
■ In late 2013 the average wholesale price of raw ivory sold by Lao traders peaked at about USD 2,000/kg.
■ By late 2016, the average wholesale price of raw ivory in Laos had declined to USD 714/kg, in line with prices elsewhere in the region. This price was much higher than in African countries, such as Sudan (Omdurman/Khartoum), where the average wholesale price of ivory was USD 279/kg in early 2017. This price differential is due to the extra expenses incurred in transport and bribes to government officials on the long journey to Asia.
■ In Laos, the decline in the wholesale price of raw ivory between 2013 and 2016, as elsewhere in the region, was mainly due to the slowdown in China’s economy, that resulted in an oversupply of illegal ivory, relative to demand.
■ Ivory items seen for sale in Laos are carved or machine-processed in Vietnam by Vietnamese and smuggled into Laos for sale, or are processed by Chinese traders in Laos on new computer driven machines. Ivory carving by Lao people is insignificant.
■ In Laos, the survey found 81 retail outlets with ivory on view for retail sale, 40 of which were in the capital, Vientiane, 21 in Luang Prabang, 8 in Kings Romans, 5 in Oudom Xay, 3 in Pakse, 2 in Dansavanh Nam Ngum Resort and 2 in Luang Nam Tha.
Ihwagi, F.W., Thouless, C, Wang, T., Skidmore, A.K., Omondi, P., Douglas-Hamilton, I.Night-day speed ratio of elephants as indicator of poaching levels (2017)
Ecological Indicators. Volume 84, January 2018, Pages 38–44
https://doi.org/10.1016/j.ecolind.2017.08.039
show/hide summaryPoaching has escalated in recent years and is becoming the greatest immediate threat to elephants' survival. There is an urgent need to develop innovative and cost-effective methods for monitoring changes in elephant poaching levels remotely to complement the existing traditional field-based ground surveys. Since elephants are known to respond to anthropogenic risks by alterations in their speed of travel, we quantified this alteration as a ratio of night time speed to the day time speed (night-day speed ratio) and examined its relationship with poaching levels. Our hypothesis here is that poaching is a clear daytime risk, and thus an increase in night time movement rates over those seen during the day will support this hypothesis. Using elephant GPS tracking and mortality data collected in the Laikipia-Samburu ecosystem of northern Kenya between 2002 and 2012, we calculated the mean night-day speed ratio for collared elephants that utilised any of 13 contiguous land units, each under different ownership and management status, and related this ratio to the corresponding poaching levels before and during a poaching surge.
Our study shows that the mean night-day speed ratio of both male and female elephants did not vary significantly by month, ruling out possible seasonal effect. However, both male and female elephants moved more at night than during the day where and when poaching levels were high. The relationship between poaching levels and night-day speed ratios was stronger for females than for males. We concluded that the variation in the night-day speed ratio of elephants might be used as an effective indicator for changes poaching levels on a near real-time basis. We recommend its adoption as a complimentary anti-poaching tool, where GPS tracking data is already available, because it would increase the geographical range for monitoring of poaching levels. The significant alteration in movement behaviour by elephants in response to poaching also has potential implications for their foraging strategy, reproduction and ultimate survival, all of which are not yet fully understood.
Ojwang, G.O., Wargute, P.W., Said, M.Y., Worden, J.S., Davidson, Z., Muruthi, P., Kanga, E., Ihwagi, F., Okita-Ouma, B.Wildlife Migratory Corridors and Dispersal Areas: Kenya Rangelands and Coastal Terrestrial Ecosystems (2017)
Copyright © 2017
Government of the Republic of Kenya show/hide summaryKenya is endowed with an extraordinary wealth of mammals, birds and other biodiversity, a unique
heritage for the people of Kenya. Kenya’s development blueprints on ensuring environmental sustainability –
the Constitution (2010), Vision 2030, and Sustainable Development Goals (SDG) – recognize the importance
of sustainable resource use, reducing biodiversity loss, and maintenance of ecosystems processes. In the Vision
2030, under the conservation strategic thrust, the flagship project on securing wildlife dispersal areas and migratory
corridors features prominently as one of the economic and social pillars.
All over the country, wildlife populations have declined dramatically over the last few decades. Ecosystems
are failing to provide ecological services such as water storage, soil protection and climate moderation. At the
same time, human-wildife conflict has increased. To reduce and reverse this trend, it is urgent to assess and
secure Kenya’s wildlife dispersal areas and migratory corridors as a way to restore balance to our country’s
superb environment.
Okita-Ouma B., Lala F., Koskei M., Mwazo A., Kibara D., King L., & Douglas-Hamilton I.Tracking and monitoring of elephant movements along the Standard Gauge Railway and highways in the Tsavo Ecosystem, Kenya (March 2016 – June 2017) (2017)
Save The Elephants and Kenya Wildlife Service. Typescript 28 pages show/hide summaryThe new Standard Gauge Railway (SGR) linking Mombasa to Nairobi became officially operational in June 2017. It is a flagship project for Kenya under Kenya’s blue print Vision 2030, whose goal is to transform Kenya into a middle-income industrialized economy by 2030. More than a quarter i.e., 135 km of the 487 km railway is through the Tsavo Conservation Area, bisecting the range of Kenya’s largest surviving single elephant population of 12,800 animals, as well as many other wildlife species. This presents a challenge.
While the old railway line lay level with the ground, the new SGR is elevated up to 10 metres in some sections and fenced on either side, creating a substantial barrier to wildlife movement with likely negative consequences. The contractor of the SGR, the China Roads and Bridges Cooperation, built six official wildlife passages to connect Tsavo East to Tsavo West National Parks and Tsavo East to the Taita Ranches to allow animals to travel in search of food, water and mates. The 2 km Tsavo River super bridge, the Kenani and the Maungu railway crossing bridges makes a total of nine wildlife passages.
Save the Elephants in partnership with the Kenya Wildlife Service has been tracking elephants to understand the effectiveness of these passages. We fitted ten elephants (eight along the SGR and two along the Voi – Taveta road) with GPS satellite radio transmitters in March 2016. In June 2016, we initiated systematic vehicle and foot monitoring along the SGR of elephants and other species, not fitted with radio transmitters, by using their signs such as footprints and dung. Some elephants have used them effortlessly, with families in tow, while others have preferred to use the culverts and bridges that perforate the line but which have not officially been classed as wildlife passages. Even though the details of other wildlife species crossings are not reported here, it is important to highlight here that giraffes generally avoided any form of underpasses with only one footprint recorded on 13th March 2017 at culvert DK234+062. Generally, however the culverts offer an opportunity for wildlife crossing points between the two sides of Tsavo National Park and adjoining ranches keeping genetic diversity open and a flow of inter-seasonal movements.
de Silva, S., Schmid, V., Wittemyer, G.Fission–fusion processes weaken dominance networks of female Asian elephants in a productive habitat (2017)
Behavioral Ecology (2017), 28(1), 243–252. doi:10.1093/beheco/arw153 show/hide summaryDominance hierarchies are expected to form in response to socioecological pressures and competitive regimes. We assess dominance relationships among free-ranging female Asian elephants (Elephas maximus) and compare them with those of African savannah elephants (Loxodonta africana), which are known to exhibit age-based dominance hierarchies. Both species are generalist herbivores, however, the Asian population occupies a more productive and climatically stable environment relative to that of the African savannah population. We expected this would lower competition relative to the African taxon, relaxing the need for hierarchy. We tested whether 1) observed dominance interactions among individuals were transitive, 2) outcomes were structured either by age or by social unit according to 4 independent ranking methods, and 3) hierarchy steepness among classes was significant using David’s score. Elephas maximus displayed less than a third the number of dominance interactions as observed in L. africana, with statistically insignificant transitivity among individuals. There was weak but significant order as well as steepness among age-classes but no clear order among social units. Loxodonta africana showed significant transitivity among individuals, with significant order and steepness among age-classes and social units. Elephas maximus had a greater proportion of age-reversed dominance outcomes than L. africana. When dominance hierarchies are weak and nonlinear, signals of dominance may have other functions, such as maintaining social exclusivity. We propose that resource dynamics reinforce differences via influence on fission–fusion processes, which we term “ecological release.” We discuss implications of these findings for conservation and management when animals are spatially constrained.
show/hide summaryUnderstanding the spatial structuring of animal behaviors and how they link landscapes can be critical for conservation management. This emerging field has been greatly facilitated by technologically advanced acquisition and analysis of data on animal movements. The framework of graph theory, which directly quantifies network connectivity properties, provides a useful addition to this tool set. Using a novel application of graph theory, we investigate the structure and patterning of African elephant Loxodonta africana rest sites, a potentially critical feature structuring spatial properties of animal populations. Elephants in the study rested intermittently and for short durations (1–3 rests d–1, lasting 3–5 h total). They switched circadian rest patterns according to landscape attributes, resting more during the day and further from permanent water in areas with high human density outside protected areas. Within protected areas and during the dry season, elephants showed clustering and sequential use of rest nodes (repeated motifs). Repeated use of specific rest nodes (self-looping) was more frequent than expected if rest nodes were chosen at random, particularly when outside protected areas further from water, indicating the importance of preferred rest sites. Our results suggest that elephants adjust resting behavior when in human-dominated areas, using preferred resting sites presumably in locations that reduce the risk of interactions. This study demonstrates how graph theory may be used practically to gain novel insight into behaviours, such as resting, that are discrete in time and space. Furthermore, analysis of the spatial and network properties of rest sites, given an individual's susceptibility when engaged in rest behavior, allowed characterization of spatio-temporal risk perception, providing a powerful behavioral based means to quantify the landscape of fear.
show/hide summaryMonitoring anthropogenic impacts on wildlife can be challenging, particularly when human activities affecting wildlife are cryptic. Using anti-predator behaviors as proxies for perceived pressure is appealing because of the relative ease with which they can be recorded and the presumed relationship between the threat of interest and a predator stimulus. However, behaviors are plastic and affected by factors unrelated to human activity. Consequently, it is critical to assess the relationship between behavioral indicators and their context before interpretation. In this study we used a combination of behavior, movement and demography from a threatened population of African elephants in northern Kenya to determine whether reaction to research vehicles was indicative of poaching pressure. We used mixed-effects models predicting reaction of elephants to observer vehicle approaches in which we treated individuals as random effects and included ecological, anthropogenic, spatial, social and demographic predictor variables. Contrary to our hypothesis, recorded levels of reactive behavior did not increase with poaching levels in either a population-level dataset or a data subset of individuals whose spatial behavior was precisely known via radio-tracking. Rather, primary productivity positively predicted reactive behavior in both datasets. This relationship was heightened by the presence of musth males in the radio-collar dataset. Reactivity was not related to the time since entering the protected areas, but increased among groups that spent less time in the protected areas. Inter-individual differences were apparent, suggesting the importance of inherent differences (e.g. personality) across groups. In our study, elephants plagued by a severe human threat did not react defensively to humans in another context, suggesting nuanced discrimination of threats. Our study demonstrates the caution that should be taken in designing studies that use behavioral indices to represent threat and contributes to a growing body of literature employing behavioral indicators to monitor wildlife populations of conservation concern.
show/hide summaryDespite increased awareness, China continues to be the world’s major concern in the consumption
of illegal ivory. Media attention and support from international NGOs have drawn attention to the
poaching crisis currently facing elephants in Africa; there has been growing involvement and dialogue
with China from Western leaders and other prominent gures about this. President Obama of
the US and Prince William of the UK both spoke in 2015 on Chinese television addressing fears of
the ongoing elephant poaching to meet demand for ivory in China. Within China certain celebrities have
been involved in campaigns with NGOs, drawing further attention to the elephant-poaching crisis.
There has been less awareness about ivory from the woolly mammoth as its tusks are legal, being from an extinct species; many people in China and around the world remain ignorant about the extent of the use of mammoth ivory in China
show/hide summaryDetermining underlying demographic population processes is fundamental for the management and monitoring of wildlife species (Caughley & Sinclair 1994). Data on demographic processes (fecundity, survival, age of first reproduction, etc.) allow quantification of population trajectories, the identification of population sectors to which growth is most sensitive and determinations of the mechanisms driving population trends (Caswell 2001). In particular, when animal populations have suffered severe declines, demographic data are critical for evaluating what conservation measures might be effective and estimating time to recovery (Beissinger & Westphal 1998). Such information is fundamental to policy debates regarding the viability and benefits of species trade.
Cerling, T.E., Barnettea, J.E., Chessona, L.A., Douglas-Hamilton, I., Gobush, K.S., Unog, K.T., Wasser, S.K., Xui, X.Radiocarbon dating of seized ivory confirms rapid decline in African elephant populations and provides insight into illegal trade (2016)
www.pnas.org/cgi/doi/10.1073/pnas.1614938113 show/hide summaryCarbon-14 measurements on 231 elephant ivory specimens from 14 large ivory seizures (?0.5 ton) made between 2002 and 2014 show that most ivory (ca. 90%) was derived from animals that had died less than 3 y before ivory was confiscated. This indicates that the assumption of recent elephant death for mortality estimates of African elephants is correct: Very little “old” ivory is included in large ivory shipments from Africa. We found only one specimen of the 231 analyzed to have a lag time longer than 6 y. Patterns of trade differ by regions: East African ivory, based on genetic assignments of geographic origin, has a much higher fraction of “rapid” transit than ivory originating in the Tridom region of Cameroon–Gabon–Congo. Carbon-14 is an important tool in understanding patterns of movement of illegal wildlife products.
show/hide summaryDominance hierarchies are expected to form in response to socioecological pressures and competitive regimes. We assess dominance relationships among free-ranging female Asian elephants (Elephas maximus) and compare them with those of African savannah elephants (Loxodonta africana), which are known to exhibit age-based dominance hierarchies. Both species are generalist herbivores, however, the Asian population occupies a more productive and climatically stable environment relative to that of the African savannah population. We expected this would lower competition relative to the African taxon, relaxing the need for hierarchy. We tested whether 1) observed dominance interactions among individuals were transitive, 2) outcomes were structured either by age or by social unit according to 4 independent ranking methods, and 3) hierarchy steepness among classes was significant using David’s score.