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Abstract. Network (graph) theory is a popular analytical framework to characterize the structure
and dynamics among discrete objects and is particularly effective at identifying critical hubs and pat-
terns of connectivity. The identification of such attributes is a fundamental objective of animal move-
ment research, yet network theory has rarely been applied directly to animal relocation data. We
develop an approach that allows the analysis of movement data using network theory by defining
occupied pixels as nodes and connection among these pixels as edges. We first quantify node-level (lo-
cal) metrics and graph-level (system) metrics on simulated movement trajectories to assess the ability
of these metrics to pull out known properties in movement paths. We then apply our framework to
empirical data from African elephants (Loxodonta africana), giant Galapagos tortoises (Chelonoidis
spp.), and mule deer (Odocoileous hemionus). Our results indicate that certain node-level metrics,
namely degree, weight, and betweenness, perform well in capturing local patterns of space use, such as
the definition of core areas and paths used for inter-patch movement. These metrics were generally
applicable across data sets, indicating their robustness to assumptions structuring analysis or strategies
of movement. Other metrics capture local patterns effectively, but were sensitive to specified graph
properties, indicating case specific applications. Our analysis indicates that graph-level metrics are
unlikely to outperform other approaches for the categorization of general movement strategies (central
place foraging, migration, nomadism). By identifying critical nodes, our approach provides a robust
quantitative framework to identify local properties of space use that can be used to evaluate the effect
of the loss of specific nodes on range wide connectivity. Our network approach is intuitive, and can be
implemented across imperfectly sampled or large-scale data sets efficiently, providing a framework for
conservationists to analyze movement data. Functions created for the analyses are available within the
R package moveNT.

Key words: animal movement; connectivity; GPS radio telemetry; movement corridor; network (graph) theory;
space use.

INTRODUCTION

The field of movement ecology has expanded rapidly in
recent years due to advances in spatiotemporal data collec-
tion (facilitated by innovations in tracking technology; Kays
et al. 2015) and the coordinated development of new analyt-
ical approaches (B€orger 2016). These advances have pro-
vided insight to fundamental questions on animal behavior
and individual–landscape interactions (e.g., Avgar et al.
2015, Basille et al. 2015, Bastille-Rousseau et al. 2015, Potts
and Lewis 2016). Despite the many opportunities created by
improvements on these two fronts, there is an emerging dis-
connect between the development of sophisticated analytical
approaches and applications to behavioral and applied ques-
tions (B€orger 2016). This disconnect is caused by complexity
in analytical approaches, associated computational limita-
tions when implementing them to large data sets, and a lack
of compiled tools and functions to make methods accessible

to general ecologists. In this context, approaches that are
intuitive, accessible and implementable for large-scale and
often imperfectly sampled data sets are desirable.
In network theory (or graph theory), the structural

aspects (i.e., configuration) of a set of nodes (also called ver-
tices or points) and their connections (edges) can be quanti-
fied using a diversity of metrics that characterize the
position and significance of nodes to the overall graph struc-
ture and integrity. As a simple example, air transportation
can be seen as a network where nodes are represented by the
different airports, edges represented as connections among
airports, and network metrics can be calculated to help iden-
tify critical hubs in the network. Overall, network theory is
a popular analytical framework for characterizing the struc-
ture and dynamics of node-based data that has been applied
to system analyses in a wide variety of sciences including
ecology, physics, computer science, economics, and sociol-
ogy (Watts and Strogatz 1998). The ability to pinpoint criti-
cal hubs and connections structuring a network and its
dynamics has made these approaches instrumental in relat-
ing processes and patterns. Relevant to movement, network
theory is commonly applied in the assessments of human
transportation and infrastructure networks (Guimer�a et al.
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2005, Kurant and Thiran 2006). In animal ecology, applica-
tion of network theory has been more commonly applied to
the study of population rather than spatial processes, includ-
ing wildlife epidemiology (Keeling and Eames 2005), social
systems, and the interaction structure among individuals
(Croft et al. 2011, Pinter-Wollman et al. 2014), and food
webs (Dunne et al. 2002). But application of network theory
to spatial processes in ecology is growing.
Network theory is increasingly being adopted in land-

scape ecological approaches to quantify connectivity within
landscape, where patches of suitable habitats are represented
as nodes, and connectivity among specific patches as undi-
rected edges (Minor and Urban 2008, Galpern et al. 2011).
Applications of network theory in this context have helped
identify critical areas for the protection of endangered
species (Fortuna et al. 2006, O’Brien et al. 2006) as well as
consequences of human interventions on predator–prey
interactions (Courbin et al. 2014). More recently, network
theory has been applied to look at sequential locational use
through analysis of data from arrays (point survey loca-
tions) acquired from acoustic telemetry or mark–recapture
to quantify animal movement based connectivity (Desender
et al. 2006, Finn et al. 2010, Fletcher et al. 2011, Jacoby
et al. 2012, Stehfest et al. 2013, 2015, Fox and Bellwood
2014, De Lima et al. 2015, Papastamatiou et al. 2015).
Despite the richness of satellite tracking data being collected
on numerous species globally (Kays et al. 2015), network
theory has rarely been applied directly to actual relocation
movement (i.e., satellite telemetry) data. Where it has been
applied, it has served to highlight properties of spatially
restricted behaviors like resting locations (Fortuna et al.
2009, Wittemyer et al. 2017). Expanding its application can
serve to define emergent properties regarding the organiza-
tional structure of animal space use in a manner that is less
restrictive and sensitive to a priori definitions of behavioral
categorization or spatial definitions of locations (e.g., node,
edges, and landscape characteristics).
Combining network theory with movement data provides

a promising approach for the analysis of relocation data (re-
viewed in Jacoby and Freeman 2016). Network theory relies
on a mathematical framework that allows the calculations
of metrics that can be extracted at the node-, edge-, or
graph-levels (Rayfield et al. 2011). Node centrality metrics,
like weight and degree, can serve to identify areas of excep-
tional use (potential importance). Metrics of betweenness
(e.g., betweenness centrality) can provide insight to nodes
critical for connectivity in a system, while metrics that define
communities (e.g., clustering coefficient) can illuminate spa-
tial structuring (i.e., neighborhoods). Furthermore, metrics
can identify the time-specific directionality of movements
and the degree of flow across the system. These measures
may have an intuitive appeal to movement ecologists given
the intrinsic similarity in properties captured by network
metrics with some of the common goals of animal move-
ment studies (Jacoby and Freeman 2016). Most useful may
be defining animal core range and locations important to
flow and connectivity in a landscape (i.e., corridors). Yet,
application of network theory to relocation data acquired
from GPS telemetry remains rare.
Our goal here is to develop an intuitive approach for

translating animal movement data acquired from relocation

data into a network framework, and then investigate the
potential of network theory as a suite of analytical tools for
relocation data. Initially, we demonstrate an approach for
developing a movement-based network for analysis of relo-
cation data that can quickly produce a visually rich summary
of animal movement properties. We then test the potential of
network theory for two applications, namely (1) the utility of
node-level metrics to reveal local properties of animal move-
ment and (2) the use of graph-level metrics to characterize
movement patterns. We explore these objectives on simulated
movement data with known characteristics and then apply
our analytical framework to empirical data from African ele-
phants (Loxodonta africana), giant Galapagos tortoises
(Chelonoidis spp.), and mule deer (Odocoileous hemionus) to
illustrate applications of our approach to empirical animal
movement data. We discuss the potential of our approach to
advance movement analysis and interpretation of space use
behavior, highlighting the utility of different metrics for
different objectives and scales of analyses.

METHODS

From movement relocations to a movement network

To translate movement into a format that can be analyzed
using graph theoretic approaches, we overlaid relocation
data on a grid (i.e., rasterized the data), where each pixel
represented a separate node (Fig. 1, first row). Movement
from one pixel to another was represented by an edge, and
the edge was weighted by the number of times this transition
was observed. Because connections between nodes summa-
rized in this manner are a function of the GPS data collec-
tion resolution and the pixel size, we defined pixel size based
on the emergent step length distribution as the median inter-
point distance (i.e., median step length) for a given individ-
ual. We tested the sensitivity of various metrics to the
defined grid resolution (discussed in the “Node-level metrics
and local space-use” section). From this discretization of the
movement data, we can derive the adjacency matrix of the
graph. The adjacency matrix contains the counts of transi-
tions between any two cells of the grid. Depending on the
question of interest, we can generate an adjacency matrix
that is unweighted (i.e., with binary elements rather than
counts), directed (i.e., where the direction of transitions mat-
ters), and representing individual- or population- (all sam-
pled individuals in combination) level movements.
The adjacency matrix can be used for the calculation of

numerous network metrics (Fig. 1, Table 1), offering
inference at the node (local) or graph (system) level. Node-
based metrics can also be subsequently summarized at the
graph level (e.g., by calculating averages, coefficient of
variation, spatial autocorrelation, etc.). We employed the
metrics available within the package igraph, a package
(available in R, python and C) providing efficient network
analytics, and summarized the definitions of these metrics
in Table 1 (igraph available online).7 We calculated the
metrics using the weighted adjacency matrices when
required.

7www.igraph.org
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Node-level metrics and local space-use

The definition of local spatial properties is a critical
objective in movement ecology. We explored the effective-
ness and utility of six different metrics (weight, self-loop
number, degree centrality, betweenness, clustering coeffi-
cient, and eccentricity; Table 1) for defining core space use
and critical areas for interpatch movement (connectivity) in
simulated movement trajectories representing movement
among multiple patches. Movement was simulated using a
two-dimensional Ornstein-Uhlenbeck process for move-
ment within a core range and a Brownian bridge motion
model for movement between patches, randomly moving to
an alternative patch during transitions. These simulations
corresponded to the migratory and multi-patches movement

explained in the “Graph-level metrics and characterization
of large-scale movement patterns” section. Code for move-
ment strategy simulations is provided in Data S1.
In addition to assessing the ability of network metrics to

define known features, we tested the sensitivity of metrics to
movement and grid properties including (1) the grid size
used to construct the network, (2) the number of patches in
the network, (3) the ratio of locations associated with
patches and interpatch movement, (4) the sampling interval,
and (5) the discreteness of patches and corridors. For all sim-
ulation scenarios, we generated 1,000 movement trajectories
for each iteration of parameters (i.e., n = 4,000 for each set
of scenarios [row] in Table 2). We calculated each metric,
which was then used as a response variable in a Gaussian
mixture model with unequal variance to cluster values in
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FIG. 1. Pathways illustrating how network metrics can be estimated directly from relocation data. First a grid is overlaid with relocation
data (arrow 1). From this grid, the number of connections from and to each pixel is summed (arrow 2) and entered in a weighted adjacency
matrix (arrow 3). From this adjacency matrix, multiple network metrics can be calculated and displayed as a raster (arrows 4).
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two groups potentially representing patches and interpatch
movement. We then evaluated the error of commission (per-
centage of simulation improperly assigned to a cluster or
false positive), error of omission (percentage of simulation
not assigned to the appropriate cluster or false negative),
and Cohen’s kappa statistics (overall accuracy; Cohen 1960)
when comparing the cluster defined groupings to the known,
simulated conditions to quantify the efficacy of a given met-
ric under known circumstances to capture core areas and
interpatch movement (average values as well as 95% quantile
confidence intervals reported in Appendix S1). Lastly, we
calculated these different node-level metrics for an individ-
ual elephant, giant tortoise, and mule deer using a grid size
representing the median step length of this individual (see
section “Graph-level metrics and characterization of large-
scale movement patterns” for details about each data set).

Graph-level metrics and characterization of large-scale
movement patterns

A fundamental question in movement ecology is the type
of movement pattern demonstrated by a species, commonly
grouped into broad categories of nomadic, migratory, or
range resident. We explored the use of graph-level metrics to

distinguish between movement strategies by applying graph
theoretic analyses to simulated movements representing
four, simplified and stereotypical movement strategies (mi-
gration, structured multi-patch movements, residency, and
nomadism). Migration was simulated using a two-dimen-
sional Ornstein-Uhlenbeck process for movement within a
core range and a Brownian bridge motion model for migra-
tory movement between two patches, where the ratio of
locations associated with the core range vs. migratory jour-
ney was adjusted. Multi-patch movements were simulated
using a similar model structure, but with three to five core
areas (patches) instead of two, for which individuals ran-
domly moved to an alternative patch during transitions.
Range residency was simulated using a two-dimensional
Ornstein-Uhlenbeck process, for which heterogeneity in the
movement was elicited by defining 10 closely located attrac-
tion centers that animals randomly switched between. The
attraction and noise parameters were adjusted so that move-
ment around each center overlapped. Last, we simulated
nomadic movement using a random walk model, with no
bounds. Code for movement strategy simulations is provided
in Data S1.
For each of the four simulated movement categories we

extracted and compared graph-level metrics including diame-
ter, clustering coefficient, density, and modularity. To better
understand potential underlying relationships between these
graph-level metrics and properties associated with simulated
movement strategies, we performed a principal component
analysis (PCA) to identify the primary, uncorrelated compo-
nents for each movement strategy. In addition, we calculated
the graph-level metrics using the median step length of each
individual as the grid size for 58 individual elephants, 40
giant tortoises, and 75 mule deer that were followed for at
least one year to assess how variation in network metrics in
real systems corresponded to the variation initially observed
within our simulations from the PCA first two-axes. Reloca-
tions fix frequency was 30 min for mule deer, 1 h for giant
tortoises, and 2 h for elephants (some elephants were sampled
at different frequency and were all resampled to 2 h). All data
were preprocessed so that missing locations were identified
within the time series of GPS locations (i.e., observed steps
were part of a regular trajectory). Further details about each
data set are provided in Wittemyer et al. (2017), Bastille-
Rousseau et al. (2017a), and Northrup et al. (2016), respec-
tively. All analyses were done in R 3.3.2 using the packages
adehabitatLT (Calenge 2006), igraph (Csardi and Nepusz
2006), mclust (Fraley and Raftery 2002), raster (Hijmans
2016), fmsb (Nakazawa 2015), and ggplot2 (Wickham 2009).
We also implemented functions to perform the analyses

TABLE 1. Network metrics extracted from relocation data.

Metric Definition

Node-level metrics
Weight number of locations within a pixel
Self-loop sum of sequential relocations in the same

pixel
Degree centrality number of different pixels a pixel is

connected to
Betweenness centrality number of shortest paths going through

a pixel relative to the total number of
shortest path (the importance of a
pixel in the organization of flows
in the network)

Eccentricity distance of a pixel to farthest other
pixel in the graph

Clustering coefficient probability that the adjacent pixels
are connected

Graph-level metrics
Diameter maximum length (or maximum

eccentricity) of the network
Clustering coefficient degree to which nodes tend to cluster

together
Density ratio of the number of edges vs. the

number of potential edges
Modularity represents the level of sub clustering

in graph

TABLE 2. Simulation scenarios testing the effectiveness of different node-level network metrics in capturing local movement properties.

Scenarios

Grid size (percentile
of step length
distribution)

Number of
simulated
patches

Ratio of location
in patch vs.
corridor (%)

Location
sampling

time interval

Minimum distance
between patches
(discreteness)

Grid size 25, 50, 75, 90 4 95 1 200
Number of simulated patches 50 2,3,4,5 95 1 200
Patch/corridor location ratio 50 4 50, 65, 80, 95 1 200
Location sampling interval 50 4 95 1, 2, 10, 25† 200
Distance between patches 50 4 95 1 200, 100, 50, 25

†E.g., a time interval of 25 means that the data are sampled every 25 time steps instead of every step.
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mentioned above in the R package moveNT (available
online).8 We provide step-by-step illustration of how to use
the package in Appendix S2.

RESULTS

Node-level metrics and local space use

Assessment of the efficacy of node-level metrics to capture
local space use properties in simulated movement trajecto-
ries revealed the general utility of several metrics, particu-
larly to define core areas and interpatch movements
(corridors). Degree has the highest kappa statistic relative to
other metrics for defining patch and corridor areas
(Appendix S1: Table S1). The performance of degree, how-
ever, was somewhat sensitive to grid properties. The kappa
statistics of degree were highest when using a grid size repre-
senting the median or 75th percentile of distance travelled
(Appendix S1: Table S1). Results for weight generally were
parallel to degree (it was only slightly less accurate when
relocation data were sparse). Betweenness had the lowest
rate of commission error for corridor definition and
performance increased when the ratio of patch/corridor
locations approached one and the discreetness between
patches decreased (Table 3). When patches were not discrete,
betweenness outperformed degree, particularly for classify-
ing patches (Appendix S1: Table S1) potentially indicating
the usefulness of betweenness when applied to more com-
plex movement data (Table 3). However, betweenness had
lower kappa scores relative to degree and weight for charac-
terizing patch and corridors. Relative to other metrics, clus-
tering coefficient and self-loop number performed poorly in
classifying patch and corridor (Table 3), but highlighted
other attributes of potential interest. Eccentricity outper-
formed degree in classifying corridors and patches when the
ratio of the location between patches and the corridor was
close to 50%, but was generally less accurate given other
data structures (Table 3).
Node-level metrics applied to elephant, tortoise, and mule

deer relocation data confirmed the potential of network
metrics to identify key local properties of animal movement
(Appendix S1: Table S2). Parallel to findings from simulated
data, weight and degree highlighted areas of intensive use
for all species (Figs. 2–4). Similarly, betweenness captured
the migratory journey for tortoise and highlighted corridors

in elephant movement (Figs. 2–4). Eccentricity performed
well at classifying patches in simulated migratory move-
ments, whereas it performed poorly on tortoises data, most
likely because the examined tortoise migratory routes did
not overlap (Appendix S1: Figs. S1–S3).

Graph-level metrics and characterization of large-scale
movement patterns

Graph-level metrics were differentiated across the simu-
lated movement strategies, with the two principal compo-
nents (PC) of the PCA explaining 94% of the variance
among the graph-level metrics (only the first axis was
retained using the Broken-stick criterion). PC1 was associ-
ated more strongly with the clustering coefficient, density,
and diameter (Fig. 5). PC2 was more strongly associated
with modularity (Fig. 5). PC1 disentangled nomadic move-
ments from other strategies with purely nomadic movements
generally having higher clustering coefficient and density
than other strategies (Fig. 5). PC2 distinguished range resi-
dency (or sedentarism) from structured movement. Range
residency generally had higher modularity. Migration and
multiple patch movements had higher diameter, lower den-
sity, and lower clustering coefficient (Fig. 5).
Projecting metrics from true movements of elephant, mule

deer, and tortoise onto the PCA scatterplot revealed that
most individuals of each species fell in the middle of the
PCA projected space with limited overlap of regions associ-
ated with a given strategy (Fig. 6). This would suggest inter-
mediate strategies relative to the strict simulated movements,
although most individuals were in proximity to the cluster
indicative of a specific strategy. Movements of elephants and
tortoises were assigned near the vertices representing simu-
lated nomadic strategists and migratory/multi-patch move-
ments, with most of the variation in their movement
explained by PC1. In contrast, the more simplistic move-
ments of mule deer were found between resident and migra-
tory/multiple-patch movements, with variation explained by
PC2 (Fig. 6).

DISCUSSION

Our analytical framework provides a straightforward
approach to apply network theory to animal relocation
data, providing both graph- and node-level metrics to
describe multi-scale patterns of animal movement at the
local (patch) and system-wide (individual animal range or

TABLE 3. Descriptive summary of the performance of different metrics in classifying core areas and corridors.

Metrics Limitations Preferred when

Degree grid size becomes too big, decrease in patch discreetness,
low sampling intervals, patches/corridors ratio close to one

grid relatively fine scaled, high-resolution sampling,
strong spatial structuring

Weight same as specified for degree same as for degree
Betweenness relatively high omission error rates low discreteness or overlap between patches
Eccentricity perform poorly except for migratory movement migratory movement (two patches), ratio of

patches/corridors location close to one
Clustering coefficient low classification success in all instances never
Self-loop low classification success in all instances never

Notes: Summary is based on scenarios presented in Table 2 and kappa statistics and errors of commission and omission presented in
Appendix S1: Table S1. Metrics are presented in order of versatility and performance.

8 http://github.com/BastilleRousseau/moveNT
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FIG. 3. Node-level network metrics calculated on mule deer movements. Upper left panel represents the actual movement trajectory
with the first and last locations represented by the blue triangle and red square, respectively. Pixel size (223 m) is based on the median step
length for the individual. Additional metrics are presented in Appendix S2.
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FIG. 2. Node-level network metrics calculated on African elephant movements. Upper left panel represents the actual movement trajec-
tory with the first and last locations represented by the blue triangle and red square, respectively. Pixel size (115 m) is based on the median
step length for the individual. Additional metrics are presented in Appendix S2.
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study area) level. Collectively, these metrics provide exciting
new avenues for exploring and quantifying animal move-
ments. The node-level metrics degree centrality and weight
effectively defined simulated core areas and areas associ-
ated with inter-patch movement, irrespective of assump-
tions structuring analysis or strategies of movements.
Betweenness was accurate at identifying areas of impor-
tance for connectivity, particularly for empirical movement

collected on elephants, mule deer, and tortoises, which
employ starkly different movement strategies. However,
betweenness was more sensitive to data structure than
degree or weight in analyses of simulated data sets. Other
node-level metrics showed context-specific utility for identi-
fying interesting structural points in movement data. Our
analysis indicated that graph-level network metrics are unli-
kely to be as informative as other alternatives (e.g., net
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FIG. 4. Node-level network metrics calculated on Galapagos giant tortoises movements. Upper left panel represents the actual move-
ment trajectory with the first and last locations of a movement bout represented by the blue triangles and red squares, respectively. Pixel size
(15 m) is based on the median step length for the individual. Additional metrics are presented in Appendix S2.
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squared displacement) to characterize stereotypical move-
ment strategies.
Using network metrics to characterize local space-use dif-

fers from other, frequently employed approaches that focus
on movement properties (i.e., speed and directionality) to
identify movement states. Such analyses often use behavioral
change point analysis or hidden Markov models (Morales
et al. 2004, Patterson et al. 2008, Gurarie et al. 2009) to
delineate behavioral modes in recorded movements. Though
powerful, these approaches tend to be sensitive to data sam-
pling issues. For example, the graph theoretic approach we
employed does not assume any parametric changes in step
length and/or turning angle distributions, which are also a
function of sampling frequency (Fleming et al. 2014, Bas-
tille-Rousseau et al. 2017b), but instead, examines patterns
in transitions among locations. This difference in approaches
may facilitate application to a wider range of species and
data sets (i.e., with lower resolution of sampling or sporadi-
cally sampled movement processes). Our framework also dif-
fers from other methods in that it leads to spatial predictions
that are generalized over multiple relocations (i.e., metrics
are calculated over a grid; Fig. 1). Overall, our examination
demonstrated that graph theoretic approaches provide an
intuitive and straightforward way to analyze relocation data,
offering a powerful analytical framework to assess functional
movement properties.

Node- and network-level metrics

Given the broad interest in using movement data to identify
local movement patterns including core areas of use and inter-
patch movements, we found weight, degree, and betweenness
effectively identified locations with important structural prop-
erties valued in applied movement studies (Table 1). In most
instances, degree or weight metrics demonstrated substantial
agreement with simulated patches and interpatch movements
(Appendix S1: Table S1). Whereas properties captured by
weight are analogous to other approaches characterizing

intensity of use, such as using kernel density estimator with
low isopleth values or time spent in a vicinity (Barraquand
and Benhamou 2008, Wall et al. 2014), degree captures
unique properties for core area definition. Degree is not just a
function of the proportion of time spent in a given area, but
considers how frequently animals are transitioning to and
from this area, akin to central-place foraging. Degree and
weight captured different processes indicative of restricted
space use, though they were similar in terms of the ability to
identify core areas in our simulations. This means that the
appropriate choice among metrics may differ according to the
foraging strategies of the animal (Bastille-Rousseau et al.
2010, Abrahms et al. 2017). Betweenness performed relatively
poorly in classifying simulated core areas, but was more effec-
tive at identifying interpatch movements and appeared to
work well in identifying key connectivity passages on empiri-
cal data sets. Eccentricity performed well in identifying core
areas as well as migratory routes of simulated migration, but
did not appear to perform well when applied to empirical data
of individuals that demonstrated little adherence to specific
migratory routes (e.g., giant tortoise example; Fig. 4). The
self-loop metric highlighted locations where individuals
remained for extended periods, but this property did not
reflect core areas or corridors. Applying this metric to net-
works where the grid size is significantly smaller than the
median step length will provide insight to repeated use loca-
tions, potentially related to rest or cover (Wittemyer et al.
2017), or areas of high forage density.
The identification or classification of species’ general

movement strategies has been a goal of movement ecology
method development and analysis for some time (Bastille-
Rousseau et al. 2016). Simulated movement associated with
different strategies (e.g., sedentary, nomadic, migratory, and
multi-patches) showed distinct clusters based on their graph-
level metrics (Fig. 5), suggesting broad-scale network-level
metrics may be effective for categorizing broad categories of
movement strategies. However, extracting the same graph-
level metrics from animal relocation data illustrated that the
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initial separation observed among strategies was not as
apparent when applied to empirical data (Fig. 6). This was
particularly evident with giant tortoises where clear patterns
of partial migration have been documented previously using
net squared displacement (Bastille-Rousseau et al. 2017a),
yet very few individuals were found in the PCA space associ-
ated with migratory or resident individuals (Fig. 6). Specula-
tively, these differences are likely a function of nonstationary
processes in actual animal movement data not captured in
simulated data. As such, our approach is unlikely to become
an alternative to existing approaches that classify movement
strategies, such as the ones based on net squared displace-
ment (Bastille-Rousseau et al. 2016, Cagnacci et al. 2016,
Spitz et al. 2016). Rather, graph-level metrics are more likely
to clarify individual differences in movement within group,
population, or species.

Consideration when applying graph theoretic
approaches to real data

We demonstrated the utility of graph theoretic approaches
for understanding local space use properties, information
that can be valuable to local area management and conser-
vation planning. Whereas general patterns in graph-level
metrics among individuals can be assessed using a PCA or
multivariate clustering, we recommend focusing analysis on
local area properties. Approaches relying on the grouping of
node-level metrics using a clustering approach such as nor-
mal mixture modeling (Fraley and Raftery 2002) or identify-
ing nodes that deviate from given quantiles/percentiles for
specific metrics can highlight locations of interest, particu-
larly in respect to delineating core areas or locations impor-
tant for connectivity. Alternatively, comparing node-level
metrics calculated from empirical movements to those gen-
erated from random walk models or randomization of the
adjacency matrix can identify salient features in the graph
(Psorakis et al. 2012, Farine 2013). Due to the intuitive nat-
ure of graph theory, we believe that use as a visualization
and exploratory tool can be particularly illuminating regard-
ing local space-use properties. We did not explore time-
ordered network properties, but detection and occurrence of
motifs in movement networks may be useful to unveiling
spatiotemporal patterns in animal movement (Jacoby and
Freeman 2016).
Outputs from this approach (and most others) is subject

to relocation sampling frequency and applied network grid
size, which can influence outputs. Our sensitivity analysis
showed that metrics were relatively stable across a wide
range of grid sizes (25% to 75% quantile of step length).
Intuitively, using the median step length as the default grid
size is biologically logical. Sensitivity analyses demonstrated
that reducing the frequency of relocations affects metrics.
Given the ability of the approach to process large amounts
of data, we recommend that users err on the side of using
finer scale relocation, while keeping in mind the biological
process of interest. Since the representation of an animal
movement network improves with tracking duration, we
also recommend applying the analysis over the entire data
set. Analyzing data by seasons and/or year can provide
insights to changes in space use, but at the cost of informa-
tion on the broader network. The approach is flexible

enough to handle missing locations in relocation data when
all steps have the same time interval.
To facilitate the use of network theoretic approaches in

movement ecology, the functions we employed have been
collated and made available within the package moveNT
and with an accompanying vignette (also presented in
Appendix S2). This package makes use of functions and
object classes available from popular R packages (e.g.,
raster, igraph, and adehabitatLT). The framework is not
resource intensive and therefore fast and can be easily
applied to data set including >106 locations from over 150
individuals using consumer-level computers and in less than
one hour. The functions are designed to be applied at the
individual level, but a raster of node-level metrics can be
easily mosaicked (i.e., stacked and averaged) together to
obtain population-level inferences, while also allowing maxi-
mum flexibility to the user. Whereas we constructed
weighted networks and applied metrics that did not require
information on direction, using an unweighted network may
be preferred for studies focusing on the spatial configuration
rather than intensity of use in the movement network.
Greater exploration of approaches using directed networks
is merited, particularly where patterned space use is sus-
pected.
Spatial delineation of areas with different use properties

and significance in terms of connectivity is critical in miti-
gating the impact of landscape alteration on animal move-
ment. Our approach provides a useful way to define core use
areas and areas of high importance for connectivity, and
offers a quick and quantifiable means to evaluate the
impacts of removing specific nodes on connectivity. For
example, our approach can identify if access to areas of
interest will be compromised when specific nodes are
removed. Previous alternative approaches that do not use
movement data are prone to greater assumptions in their
assessments of potential use and connectivity (LaPoint et al.
2013), which may lead to erroneous identification or priori-
tization. In contrast, our approach provides insight into
functional connectivity given that it is based off empirical
relocation data, but inferences are limited to areas where
animals have travelled. Our framework is a useful addition
to the toolbox of movement ecologists, landscape ecologists,
and wildlife managers.
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