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Abstract

Wildlife counts in Africa and elsewhere are often implemented using light air-

craft with ‘rear-seat-observer’ (RSO) counting crews. Previous research has

indicated that RSOs often fail to detect animals, and that population estimates

are therefore biased. We conducted aerial wildlife surveys in Murchison Falls

Protected Area, Uganda, in which we replaced RSOs with high-definition ‘obli-

que camera count’ (OCC) systems. The survey area comprises forests, wood-

lands and grasslands. Four counts were conducted in 2015–2016 using a

systematic-reconnaissance-flight (SRF) strip-transect design. Camera inclination

angles, focal lengths, altitude and frame interval were calibrated to provide

imaged strips of known sample size on the left and right sides of the aircraft.

Using digital cameras, 24 000 high-definition images were acquired for each

count, which were visually interpreted by four airphoto interpreters. We used

the standard Jolly II SRF analysis to derive population estimates. Our OCC esti-

mates of the antelopes – hartebeest, Uganda kob, waterbuck and oribi – were,

respectively, 25%, 103%, 97% and 2100% higher than in the most recent RSO

count conducted in 2014. The OCC surveys doubled the 2014 RSO estimate of

58 000 Uganda kob to over 118 000. Population size estimates of elephants and

giraffes did not differ significantly. Although all four OCC buffalo estimates

were higher than the RSO estimates – in one count by 60% – these differences

were not significant due to the clumped distribution and high variation in herd

sizes, resulting in imprecise estimation by sampling. We conclude that RSO

wildlife counts in Murchison have been effective in enumerating elephants and

giraffe, but that many smaller species have not been well detected. We empha-

size the importance of 60 years of RSO-based surveys across Africa, but suggest

that new imaging technologies are embraced to improve accuracy.

Introduction

Wildlife surveys over large and remote wilderness areas in

Africa, America and Australia are often conducted using

light aircraft with ‘rear-seat-observer’ (RSO) crews who

count within defined ‘strip-transects’ (Caughley 1977;

Norton-Griffiths 1978; Grimsdell and Westley 1981; Gas-

away et al. 1986; PAEAS, 2014), or record distance of ani-

mals from the aircraft path in the ‘line-transect’ method

(Burnham et al. 1985; Pollock and Kendall 1987; Samuel

et al. 1987; Hone 1988; Buckland et al. 2004). It has long

been recognized that RSOs may fail to detect animals,

resulting in negatively biased population estimates

(Caughley 1974; Cook and Jacobson 1979; Pollock and

Kendall 1987; Graham and Bell 1989; Jachmann 2002;

Tracey et al. 2008; Jacques et al. 2014; Lee and Bond

2016). Animals might not be detected either because they

are ‘unavailable for detection’, being for example hidden

in dense vegetation cover or underwater (Bayliss and Yeo-

mans 1989; Marsh and Sinclair 1989; Jachmann 2001;

Mackie et al. 2013; Jacques et al. 2014) or because they

available but ‘overlooked’ by the RSOs (Fleming and
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Tracey 2008). RSO detection of ‘available’ animals

depends on a range of ‘environmental factors’ such as

animal size, group size, vegetation cover, species col-

oration, reaction to the aircraft, occurrence in multi-spe-

cies assemblages; ‘survey factors’ such as flying height,

counting strip-width and sun angle; and ‘observer factors’

such as experience and level of fatigue (Caughley et al.

1976; Anderson and Lindzey 1996; Jachmann 2002; Mel-

ville et al. 2008; McConville et al. 2009; Wal et al. 2011;

Ransom 2012; Griffin et al. 2013; Jacques et al. 2014;

Strobel and Butler 2014; Lubow and Ransom 2016;

Schlossberg et al. 2016; Schlossberg et al. 2017).

For the last 60 years in East Africa, the RSO-based ‘sys-

tematic-reconnaissance-flight’ (SRF) strip-transect tech-

nique, coupled with the ‘Jolly II analysis for unequal sized

sample units’ (Jolly 1969), has been the standard proce-

dure for counting wildlife and livestock at the local and

the national level (Andere 1981; Ottichilo et al. 2000). In

the traditional SRF technique, the aircraft follows a sys-

tematic flight pattern of transects, usually aligned to a

spatial grid-system, while RSOs count animals within

sample strips defined on each side of the aircraft (Jolly

1969; Norton-Griffiths 1978; Gasaway et al. 1986). In

Kenya, a national programme of surveys using ‘SRF-Jolly

II’, launched in 1977, has provided a unique 40-year

record for determining trends in wildlife and livestock

populations (Ogutu et al. 2016). In Tanzania where the

SRF technique was developed in the late 1960s for map-

ping seasonal distributions of wildlife in Serengeti (Mad-

dock 1979; Norton-Griffiths 1981), SRF surveys inform

policymakers of the status of wildlife populations, and

particularly of elephants (TAWIRI, 2010b). At the conti-

nental scale, SRF results are compiled to determine the

overall population status of the African elephant (Thou-

less et al. 2016).

The SRF technique is therefore ubiquitous, but concern

is often raised that SRF-derived population estimates are

not precise (have high margins of error), or fluctuate

wildly, or differ significantly (usually being lower) with

estimates derived from ground counts which are assumed

to more accurately reflect the population (Grimsdell and

Westley 1981; de Leeuw et al. 1998; Jachmann 2002; Fer-

reira and Van Arde 2009; Lee and Bond 2016; Greene

et al. 2017; Reilly et al. 2017). In the context of SRFs,

many studies have been conducted to improve RSO

counting, from determining optimum flying heights and

strip widths (Pennycuick and Western 1969; Caughley

1974), to RSO use of cameras for photographing large

herds for later counting (Sinclair 1973; Norton-Griffiths

1974), to double-observation techniques with two RSOs

on each side of the aircraft (Magnusson et al. 1978;

Caughley and Grice 1982; Pollock et al. 2006; Griffin

et al. 2013; Schlossberg et al. 2016). In recent initiatives

to standardize procedures, guidelines have been developed

that prescribe such fundamental aspects as eyesight and

counting tests for RSOs and the maximum counting peri-

ods ‘on-transect’ (Frederick et al. 2010; Craig 2012;

PAEAS, 2014). Studies to determine a ‘probability of

detection’ for SRFs have largely focussed on comparisons

with ground counts (Stelfox and Peden 1981; Jachmann

2002; Greene et al. 2017), but results are usually species

and survey specific. Elsewhere, for example, in the US,

such biases are also ascertained when marked or radio-

tagged animals known to be within the viewing field of

the RSOs were not detected (Rice et al. 2009; Wal et al.

2011; Jacques et al. 2014; Lubow and Ransom 2016),

essentially the approach that ‘we-know-they-are-there,

but-you-did-not-see-them’. This requires the availability

of many tagged animals for a meaningful sample, and

there is no evidence that this approach has been tried in

the context of an SRF survey in Africa.

SRFs over large areas are conducted using fixed-wing

aircraft, since helicopters do not have the endurance for

large surveys, and are usually unavailable or unaffordable.

Aircraft must operate at speed well above the stall to

remain safe, and hence ground speeds of 160–180 km.hr�1

are usually prescribed (Craig 2012; PAEAS, 2014). At this

speed, any particular component of the sample-strip scene

– grassland, woodland, open glade, patch of wetland –
remains in the RSO’s view for no more than 5 seconds. In

multi-species SRFs, within this short time, the RSO must

detect the species (for example, wildebeest, zebra, gazelle);

prioritize which species must be counted first; count the

animals; possibly photograph the herd; ‘subtize’ (short-

term memorize) the estimate and image number (Fleming

and Tracey 2008); record both of these on voice recorder

or call estimates to front-seat-observer (FSO, the ‘recor-

der’) (Craig 2012; PAEAS, 2014); repeat this process spe-

cies for species 2 and 3 etc. Calling to the FSO might

coincide with a call-out of the opposite RSO in the aircraft

who has also seen animals, causing confusion and distrac-

tion to all parties. Observing is characterized by long peri-

ods of nothing (where the mind may wander), punctuated

with bouts of frenetic counting where the observer may be

overwhelmed with large herds or congregations of many

species. Often multi-species counts are focussed on 1–3
priority species, for example, elephant, buffalo and giraffe;

‘supplementary species’, for example, the antelopes are

added because program managers argue that “it costs us

US $ 700 an hour to keep this plane in the air and we

want to collect as much data as possible”. Tired RSOs do

not prioritize supplementary species, with the result that

these count data are of low quality.

For many years researchers have suggested that to

reduce bias, cameras could replace observers in large-area

counts (Leedy 1948; Siniff and Skoog 1964; Caughley
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1974). However, in early attempts using analogue camera

systems for large-area surveys, the logistics of handling,

geo-referencing, processing and interpreting huge volumes

of analogue imagery inevitably proved challenging (Terlet-

zky 2013). Early examples include oblique and ‘aerial-

point-sampling’ (APS) surveys of wildebeest and buffalo

in Serengeti, Tanzania, (Norton-Griffiths 1973; Sinclair

1973), and caribou in Canada (Couturier et al. 1994).

The use of digital cameras has greatly enhanced the scope

for large area surveys, but development has been relatively

slow since, inevitably, this still requires the use of expen-

sive aircraft and the visual interpretation of thousands of

images. However, where the target wildlife population

runs into millions, or survey areas are very remote, digital

camera APS surveys are the only possible way to count;

they are now periodically conducted in Serengeti

(TAWIRI, 2010a; Hopcraft et al. 2015), with a recent fur-

ther application in Mongolia (Norton-Griffiths et al.

2015).

High-resolution digital cameras are now cheap, avail-

able and small, and data storage media have a capacity

for many thousands of images. It is now possible to test

RSO performance with parallel digital camera systems

that are inclined at the same angle as RSO-viewing, and

image the same strip. Recent cross-comparisons in simul-

taneous RSO and OCC counting have been conducted for

narwhal in Greenland (Monodon monoceros) (Br€oker et al.

2019) and kangaroos in Australia (Lethbridge et al. 2019)

where thermal image-based estimates of kangaroo density

were 30% higher than RSO estimates. In Kenya, an RSO-

based SRF was run concurrently with high-resolution

camera systems in a multi-species count over a large pro-

tected area, and it was found that RSOs missed, for exam-

ple, 60% of giraffe and 66% of the large antelopes

(Lamprey et al. 2019).

In this paper, we report on the earliest known experi-

ment in Africa in which an ‘oblique-camera count’

(OCC) system entirely replaced RSOs in a systematic

reconnaissance flight (Lamprey 2016); the study estab-

lished the later methods for the Kenya surveys indicated

above. In Uganda’s Murchison Falls Protected Area

(MFPA), we tested the hypothesis that high-resolution

camera systems, set up obliquely to replicate RSO strip-

sample counting, would generate higher and more consis-

tent population estimates than those derived from RSOs.

To achieve this, we acquired continuous imagery along

SRF transects, and interpreted this imagery for species

and numbers in the laboratory. We then compared our

estimates with those derived from recent RSO-based

counts of MFPA.

In MFPA, Uganda kob (Kobus kob ssp. thomasi) pro-

vide a special case for investigating counting performance.

The Uganda kob (pl. kob) is the national emblem species,

being the main feature of the country’s coat of arms and

also the logo of the Uganda Wildlife Authority. Uganda

kob occur in highly clumped aggregations around territo-

rial breeding grounds (or ‘leks)’ (Balmford 1992; Deutsch

1994) that persist for years. Consequently, aerial sample

counts where transects are not aligned in similar orienta-

tion give wildly varying estimates for this species (Modha

and Eltringham 1976). This species was heavily impacted

by poaching in the 1980s, with RSO-based population

estimates of approximately 5300 in 1995 (Lamprey and

Michelmore 1995; Sommerlatte and Williamson 1995)

and 7458 in 1999 (Lamprey 2000). Since that time, with

improved management of MFPA, this population has

increased exponentially, with 9315 estimated in 2005

(Rwetsiba and Wanyama 2005), 36 234 in 2012 (Rwetsiba

et al. 2012), and 58 313 in 2014 (Wanyama et al. 2014).

With kob numbers evidently increasing so rapidly, the

ability of RSOs to effectively count them is called into

question.

This research, funded by the oil company Total E&P

Uganda (TEPU) originated from the need to conduct

accurate baseline surveys of large mammal populations in

MFPA ahead of TEPU’s licenced oil development in the

area (Patey 2015; MacKenzie et al. 2017). Company

health and safety regulations prohibited the use of single-

engine aircraft carrying ‘passenger’ RSOs, and this was

therefore a camera-only operation.

In this paper, we recognize that a variety of remote-

sensing imaging techniques may be used for counting

wildlife, for example, the use of aerial sensors on aircraft

and UAVs, satellite sensors, oblique or vertical imaging,

continuous strip sampling, point sampling, and total cov-

erage imaging. We use the generic term ‘camera-counts’

to distinguish these broad remote-sensing methods from

observer counts. The OCC method is just one of many

camera-count systems, but our experiments in Uganda

appear to be the first to use this specific oblique-imaging

technique.

Methods

Survey area

The survey area of 5037 km2 encompasses the Murchison

Falls Protected area, which includes Murchison Falls

National Park and the contiguous Bugungu and Karuma

Wildlife Reserves. MFPA is spanned by the River Nile,

and is comprised in the north-west of sub-humid open

grasslands, and in the south and east of thickets and

dense woodland. The park is still recovering from massive

poaching in the 1970s and 80s, when the elephant popu-

lation was reduced from 12 000 to several hundred, and

other species were equally impacted (Douglas-Hamilton
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et al. 1980; Eltringham and Malpas 1980; Lamprey and

Michelmore 1995; Rwetsiba and Nuwamanya 2010).

The survey area was divided into four strata, Block 1,

North, South, and Bugungu (BWR), see Figure 1. In a

standard SRF pattern repeated in all four surveys, tran-

sects of 5 km spacing were orientated north-south across

the Nile. Additional transects were interleaved to 2.5 km

spacing in Block 1 to provide more precise estimates,

since this area, destined for major oil development, has

the highest wildlife density in MFPA. Figure 1 also shows

the tree cover derived from the Global Forest Watch data-

base (Hansen et al. 2013; Global Forest Watch, 2018) and

the distribution of the most numerous species, Uganda

kob (Kobus kob ssp. thomasi) in the first survey.

We conducted four surveys of MFPA; MU1, June 2015,

at the end of the ‘first rains’; MU2, September 2015, the

mid-dry season; MU3, December 2015, at the end of the

‘second rains’; MU4, April 2016, the middle of the 2016

‘first rains’. With the virtual failure of the second rains of

2015, the surveys were conducted during an uncharacter-

istically dry period in MFPA.

Camera and aircraft specifications

With reference to aircraft operations, we use the standard

aviation units of feet for altitude and knots for airspeed

since the measurement instruments in the aircraft are cal-

ibrated in these units; survey guidelines use them (Craig

2012; PAEAS, 2014) and survey practitioners understand

them. Nevertheless, where these are applied, we also con-

vert them to SI units for further clarity.

In MFPA, animals spend much of the time in the shade

under tree canopies. Aerial cameras must be inclined obli-

quely to capture these groups. We used a Cessna 210 air-

craft (registration 5X-MLW) with large opening ‘clear-

vision-panels’ in the second-row windows, through which

oblique cameras were mounted, see Figure 2. Initial field

testing indicated that 45o inclination gave the best balance

of strip, overlap and side-view beneath tree canopies, with

less influence of aircraft tilt due to turbulence.

MFPA harbours Uganda’s largest population of oribi

(Ourebia ourebi ssp. cottoni), a small antelope of body

length approximately 60 cm, and cameras must have the

‘pixel density’ and associated ground-sampling-distance

(GSD) (Neumann 2008; O’Connor et al. 2017) of < 6 cm

at 500 ft (152 m) height above ground level (HAGL) to

resolve this species. Video systems have not yet achieved

this definition and therefore for each survey, we used

standard digital-single-lens-reflex (DSLR) cameras. Ini-

tially, for MU1, these were 2 x Nikon D80 12-megapixel

cameras; for MU2-MU4, 2 x Nikon D3200 cameras of

24-megapixel density (6016 x 4000 pixels); and for MU4,

2 x Nikon D810 36-megapixel supplementary cameras for

testing in Block 1 infill transects (see Fig. 2). The digital

imagery was acquired in standard medium compression

JPG format; raw formats were not used due to file storage

issues.

Using Nikon lens field-of-view specifications (Edin

2014) and trigonometry, we calculated strip width as a

function of camera angle, lens focal length and HAGL.

We set and taped the zoom lens at 35 mm to capture a

strip of 144 m to conform to the standard SRF strip-

width of 130–150 m (Norton-Griffiths 1978; PAEAS,

2014). The theoretical GSD for the D3200 system was

2.1 cm at the inner edge of the frame footprint and

3.3 cm at the outer edge, but the Bayer array in the sen-

sor degrades this to approximately 4.2 and 6.6 cm,

respectively (Aerial-Survey-Base, 2014; Bull 2014), with

forward velocity of the aircraft further degrading the GSD

to ~ 8 cm at the inner edge (O’Connor et al. 2017).

Auto-ISO settings were adjusted to a minimum ISO of

800, to acquire images at shutter speeds of 1/1000th s or

faster.

The cameras operated automatically for 4 h, with exter-

nal power and data storage cards sufficient for 8000

images. Images were acquired at 2 s intervals, using exter-

nal intervalometers, to provide overlapping coverage

(46% overlap) at a ground speed of 105 knots

(194 km.hr�1). We geo-referenced all images to 100 m in

UTM coordinates using software software linking the GPS

tracklog to the exact time of each image (GPS-Photo Link

and RoboGeo). Each survey generated 24 000 geo-refer-

enced high-resolution images, giving a total of 96 000

images for interpretation.

Height control

The width of the transect, and hence sample size, is

dependent on the aircraft height above ground level

(HAGL). In compliance with aircraft low-level flight regu-

lations in Uganda, the prescribed HAGL was 500 ft

(152 m). We measured HAGL as the difference in height

above mean sea level (HAMSL) between the aircraft navi-

gation GPS and the terrain below at that precise location.

Terrain elevation is determined from the Shuttle Radar

Topography Mission (SRTM) digital elevation model

(DEM) Version 4.1 (Jarvis et al. 2008). This method is

made possible by recent developments in GPS technology,

the GPS Standard Position Service (SPS) (Kaplan and

Hegarty 2006) and the SRTM model with associated

EGM96/08 geoid datums (Lemoine et al. 1998; Rodr�ıguez

et al. 2006; Pavlis et al. 2012; Mukul et al. 2015). Posi-

tioning data from global SPS monitoring stations indicate

the highest GPS accuracy, with low ‘height dilution of

precision’, over the Congo basin and extending into

Uganda (NTSB, 2018).
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Height-to-fly (HTF) waypoint codes derived from

SRTM were loaded to the aircraft navigation GPS indicat-

ing to the pilot at 1 km intervals (20 s flying time) the

HAMSL required to maintain a separation of 500 ft

(152 m) with the terrain below. On completion of the

survey, we superimposed the geo-location points for each

image onto the SRTM DEM; the difference between the

GPS-recorded image HAMSL and the SRTM elevation at

that point is the height above ground. This is known as

the GPS-DEM HAGL (or ‘GD-HAGL’) as used through-

out this study.

Image strip-width calibration

We conducted the strip-width-calibration according to

standard methods of the Pan-African Elephant Aerial

Figure 1. Map of the Murchison Falls survey area. The lower map shows the 5 km sample grid over the entire survey area with distribution and

density of Uganda kob. KWR is Karuma Wildlife Reserve.The two upper maps show the kob distribution for Block 1, plotted on the 2.5 km

sample grid, for the OCC-based MU1 survey of June 2015, and the RSO-based GEC survey of May 2014.
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Census (PAEAS, 2014), with flight overpasses at increas-

ing HAGL from 200 to 700 ft (61–213 m) across 30 m

ground-marks on the Gulu base runway. HAGL was

recorded from the ‘zeroed’ pressure altimeter, vertical

laser rangefinder and by GD-HAGL. We measured strip-

width and frame footprint area using a 45o perspective

grid superimposed on each overpass image to divide the

30 m marker intervals and 45 m runway width into smal-

ler (3–15 m) sub-intervals. For all four calibrations, GD-

HAGL and laser-HAGL correlations exceeded R2 of 0.99,

while the correlations between GD-HAGL and strip width

exceeded R2 of 0.96 in all cases, see Figure 3. As a further

test, GD-HAGL was tested against laser HAGL during the

survey itself, at waypoints along transects in MU4

(Fig. 3). On strip-width calibration it was found that

slight internal miscalibrations in camera/ zoom lens elec-

tronic coupling resulted in a 37 mm focal length for a

35 mm focal length indication, giving at 500 ft an actual

strip width of 134 m, a frame footprint of 1.99 ha and

frame overlap of 46%, see Figure 4.

To derive an independent estimate of the strip-width

during the survey, we measured 80 randomly selected

images in Block 1 in MU1 and MU3 by superimposing

these onto recent (post-2010) high-definition GoogleEarth

(GE). The image corners were carefully aligned to ground

features on GE such as road markings, bushes and ant-

hills, see Figure 5. The calibrations proved accurate; for

MU1, the measured mean strip width is 139.4 m � 14.31

(SD, n = 80) in comparison with the width for all Block 1

photopoints derived from the GD-HAGL calibration of

143.0 m � 15.26 (SD, n = 12 680). For MU3, the strip

width is 135.3 m � 18.73 (SD, n = 80) in comparison

with the HAGL estimate of 136.8 m � 13.64 (SD,

n = 10 477).

Airphoto interpretation

The images were interpreted by a team of four Ugandan

interpreters, who had prior experience in aerial point

sampling (APS) imagery for landuse (Lamprey 2005; Mar-

shall et al. 2017) and with species and habitats of MFPA.

The primary species for interpretation were elephant

(Loxodonta africana), buffalo (Syncerus caffer), Roth-

schild’s giraffe (Giraffa camelopardalis ssp. rothschildi),

Lelwel hartebeest (Alcelaphus buselaphus ssp. lelwel),

Uganda kob (Kobus kob ssp. thomasi), waterbuck (Kobus

ellipsiprymnus ssp. defassa), oribi, warthog (Phacochoerus

africanus ssp. massaicus) and hippopotamus (Hippopota-

mus amphibius). Bohor reedbuck (Redunca redunca),

mid-sized between oribi and kob, and similar in form to

both, are found in MFPA. Their numbers are low, gener-

ally ‘less than 0.3.km�2 where they are common’ in Africa

(IUCN Red List, 2016); they are not counted in RSO sur-

veys in Murchison and were excluded from interpreta-

tion.

For image analysis, the interpretation team was divided

into two sub-teams, A and B. Transect start and end

times were determined from the GPS tracklogs, and teams

worked through strings of images with reference to these

recorded times in image EXIF files. From MU2 onwards,

to ensure a systematic interpretation, images were

assigned to sub-teams on the basis of left/ right cameras

Figure 2. Camera installation in the Cessna 210 aircraft, right side

cameras, survey MU4 (April 2016), with cameras angled at

45othrough the open ‘clear-vision-panels’. The main right-side camera

is the further camera (Nikon D3200, 24 MP), but in MU4 an

additional camera pair was added for testing (Nikon D810, 34 MP),

here the nearer camera (tests not reported here). The system was

duplicated on the left side of the aircraft.

SWC Jun. 15:  y = 0.5450x - 2.6903    R² = 0.9674
SWC Sep. 15:  y = 0.5421x - 6.8379    R² = 0.9965
SWC Dec. 15:  y = 0.5311x + 1.8332   R² = 0.9961
SWC Apr. 16:  y = 0.5432x + 0.5698   R² = 0.9904

Laser HAGL Dec. 15: y = 0.9896x + 19.863   R² = 0.9966
Laser HAGL Apr. 16: y = 0.9508x + 34.561   R² = 0.9966
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laser altitude (right axis) at strip-width-calibrations (SWC) for MU1-4

on the specified dates. Also shown are GD-HAGL measures against

the on-survey laser altitude measures taken at height reference

waypoints in the MU4 survey.
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and alternating transects, see Table 1. The two sub-team

interpreters worked on even- and odd-number images,

respectively, and kept in step to agree on species identifi-

cation and partitioning of wildlife herds in image over-

laps. Interpretation was conducted using standard

software for viewing and annotating JPG images and their

associated EXIF files. Each interpreter transcribed his/ her

image meta-data and counting results to hardcopy data-

sheets for entry in the survey spreadsheet database. For

each of the four MFPA surveys described in this paper,

the 24,000 images were interpreted in 6 weeks by 4 inter-

preters.

Bias in animal counting

Biased counting results in a shift of estimation in one

direction (Caughley 1974; Norton-Griffiths 1978). For

bias we determined if there were differences between

interpreter teams in the number of encounters of a spe-

cies, using the traditional Chi-square (v2) test (PAEAS,

2014). To estimate double-counting in image overlaps, in

survey MU3, we reinterpreted 2500 alternate (even num-

bered) images for odd number transects 1, 3, 5. . ..15 in

Block 1, with all animals counted in each image. Each

even-number image is treated as a point-sample without

overlap, with area determined using the image footprint

calibration. With 104 matched subunit estimates of den-

sity, we use the Bayes paired-sample t-test (Kruschke

2013), computed in JASP as an interface with R (Mars-

man and Wagenmakers 2017), to determine Bayes Factor

weights in favour of the null hypothesis of no difference

in estimates (Ho) between the full- and alternate-frame

datasets.

As a final check for both errors and biases ahead of the

Jolly II analyses, all meta-database records of the key spe-

cies of elephant, buffalo and giraffe were visually verified

against their images by an experienced specialist for cor-

rect identification, enumeration and avoidance of double

counting.

Data analysis, comparing RSO and OCC
population estimates

All four OCC surveys were analysed according to the

standard Jolly II ratio-method where the strip transects

are the sample units (Jolly 1969; Caughley 1977; Norton-

Griffiths 1978; Gasaway et al. 1986). For each survey, Jolly

II was applied to each of the four strata and these results

were then combined to give the overall population esti-

mates and standard errors for the MFPA survey area.

Between the four OCCs, we then test the null hypothesis

that estimates are not significantly different at a = 0.05,

calculating t as the difference of the estimates divided by

the square root of their pooled variances (Cochran 1954;

Norton-Griffiths 1978; Gasaway et al. 1986).

Using the procedure above, we also compare the results

of the OCC surveys with two previous RSO sample

counts of MFPA conducted in June 2012 (Rwetsiba et al.

2012) and May 2014 (Wanyama et al. 2014), the latter as

a component survey of the PAEAS (the ‘Great Elephant

176 m

116 m

129 130 131 132

134 m

133

Strip
Width

99 m

Centreline of aircraft, direction of flight

2   tilt to righto

Figure 4. Dimensions of image strip and frame footprints at 500 ft HAGL, with displacement of image 132 due to 2o aircraft tilt to the right.

The dots are simulated animals, which might be imaged once, or in overlaps. Tests were conducted comparing total counts of even-framed

images (eg image 130) to all-frame counts to evaluate any double-counting (see text).
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Census’ or GEC). Both were conducted according to nor-

mal SRF practice, with the GEC survey conforming

specifically to new survey guidelines (Craig 2012; PAEAS,

2014). RSO recording was by the ‘sub-unit method’,

where animal observations were assigned by RSOs to

2.5 km subunits along the transect called out by the

front-seat-observer. Using v2, we test the null hypothesis

that both the RSO and OCC surveys encountered the spe-

cies (‘encounters’) in the same number of subunits of the

survey area.

142 Meters

Direction of flight

Frame 
overlap

Uganda kob

Lelwel
hartebeest

Buffalo

187 m

125 m

Strip Width

Image Footprint

Google Earth parameters

2.19 Hectares

540 Feet
GD-HAGL

Figure 5. Example of measurement of image strip-width and footprint on Google Earth image (top), for Block 1, survey MU1, and identification

of species in OCC imagery, below. In this example, at 540 ft (165 m) HAGL over this rise in terrain, the GE strip-width dimension is indicated as

142 meters and image footprint at 2.19 hectares. Slight aircraft ‘tilt’ due to turbulence results in small strip displacements, as shown at top, but

the influence on strip width is not significant below a bank angle of 5o.
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Results

OCC counting bias and probability of
detection

Once the image allocation protocols had been finalized for

MU2-4 (Table 1), testing for differences in encounter rates

between Team A and B using v2 indicated no significant

differences between teams. For example in MU2, Team A

encountered Uganda kob 667 times, while Team B encoun-

tered kob 644 times (v2 = 0.403, d.f. = 1, P = 0.525). In

MU3, Team A encountered kob 675 times whilst Team B

encountered kob 694 times (v2 = 0.264, d.f. = 1,

P = 0.606). In MU2, team encounters of elephant were 10

and 18 (v2 = 2.286, d.f. = 1, P = 0.131), and in MU3 ele-

phant encounters were 13 and 11 (v2 = 0.167, d.f. = 1,

P = 0.683). The exception is hartebeest in MU3, with 188

and 117 encounters, respectively (v2 = 16.53, d.f. = 1,

P < 0.001), resulting from underestimation by one inter-

preter. In general, both interpreter teams were well

matched, with only small differences survey by survey.

We tested for double counting in 8 transects in Block

1, for survey MU3 (December 2015). Jolly II estimation

for all images gives 40 912 kob � 15 951 (SE) for all-im-

ages, compared with 40 124 kob � 14 432 (SE) for alter-

nate images. For elephants, the estimate is 824 � 611 (SE)

for all-images, compared with 965 � 616 (SE) for alter-

nate images. We determine Bayes Factor weights in favour

of the prior null hypothesis of no difference in estimates

(Ho) between the paired subunit samples (n = 103). The

evidence for Ho is ‘strong’ for elephants (BF₀₁ = 0.110),

and ‘moderate’ for buffalo (BF₀₁ = 0.142), hartebeest

(BF₀₁ = 0.301), kob (BF₀₁ = 0.116), waterbuck

(BF₀₁ = 0.209) and warthog (BF₀₁ = 0.331). For giraffe,

with just 7 subunit encounters, the evidence for Ho is

‘anecdotal’ (BF₀₁ = 0.339). For oribi, the all-image esti-

mate is 7939 � 3915 (SE), the even-image estimate is

5368 � 2274 (SE), and the Bayes Factor (BF₀₁ = 4.64)

infers that we should reject the null hypothesis. For oribi,

we suggest that identification of oribi is improved in

overlapped images. We conclude that in general, inter-

preters are partitioning herds effectively to avoid double

counting.

Jolly II analysis and OCC–RSO comparison

Table 2 shows the Jolly II population estimates and stan-

dard errors of the four MU1-4 surveys of 2015–16, the
GEC survey of 2014 and the UWA survey of 2012. Using

t-tests, we test the null hypothesis that there is no differ-

ence in estimates between any of the surveys. We cannot

reject the null hypothesis of no difference at a = 0.05

(t ≤ 1.96), with the exception of warthog between MU3

and MU4 (t = 2.60, P < 0.02). For most species therefore,

there is no significant difference in population estimates,

suggesting that the OCC method generates consistent

results.

We then merge all estimates (Cochran 1954; Norton-

Griffiths 1978) to give an overall estimate for MFPA, see

Table 2. Merged OCC estimates for kob, waterbuck, oribi,

and warthog are significantly higher than for both the

GEC and UWA count. For kob, the OCC method gives a

population estimate of 118 290 � 13 473 (SE), which is

103% higher than the GEC RSO estimate of 58

313 � 10 432 (SE). GEC estimates for kob, waterbuck

and warthog are, respectively, 49%, 51%, and 43% of the

OCC count. Oribi cannot easily be detected by RSOs, the

GEC estimate being 5% of the OCC estimate.

Meanwhile, for larger species, we have a greater agree-

ment of estimates. The GEC RSO estimate for hartebeest,

an open grassland species, is 80% of the OCC estimate.

For elephant, buffalo and giraffe, the RSO estimates are

90%, 85% and 94% of the OCC estimates, respectively,

suggesting that observers trained under the PAEAS guide-

lines are detecting a high proportion of individuals. How-

ever, we note that all four OCC buffalo estimates were

higher than the GEC estimate, the MU3 estimate by 60%,

suggesting that further investigation is needed into accu-

rate counting of this highly clumped species.

Table 2 also presents the number of subunits in which

species are detected on a presence/absence basis for the

UWA 2012, GEC 2014 and MU1 2015 counts. Using v2,
we test this difference between the MU1 OCC and GEC

2014 counts. Hartebeest, kob, waterbuck and oribi were

encountered in significantly more subunits in the 2015

OCC- count than in the 2014 RSO-count.

Our 2015/16 camera-count and comparative 2014 RSO

count (Wanyama et al. 2014) are offset by one year; how

much of the difference in the Uganda kob estimates is

due to population growth over that one year, and how

much to counting difference? Kob breed throughout the

year and have high fecundity, females producing a calf

every 280 days on average (Beuchner 1974). We use the

data of Modha and Eltringham (1976) from Queen Eliza-

beth NP, where kob longevity is estimated at 8 years, and

where 50% of calves survive their first year, to model a

maximum growth rate for kob of approximately 12%

Table 1. Alternating assignment of transects and camera sides to

interpreter sub-teams A and B, example from the start of MU3

Date Transect Start Time End Time

Team A

Camera

Team B

Camera

20/12/15 38 08:25:21 08:33:59 Left Right

20/12/15 36 08:35:37 08:43:35 Right Left

20/12/15 34 08:49:23 09:01:49 Left Right

20/12/15 32 09:04:25 09:16:21 Right Left

© 2020 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London 9
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annum�1. In MFPA, forage resources are not limited and

predator numbers are low, with just 138 lions recorded

north of the Nile in 2010–2012 (WCS, 2018). The mod-

elled population growth rate is reflected in the RSO

counts with an increase from 7548 kob in 1999 to 36 234

in 2012, and where the exponential rate of growth r is

calculated at .121 (Sinclair et al. 2006). If the 2015 sur-

veys had been conducted by RSOs, we would have

expected the 2014 population, estimated at 58 000

(Wanyama et al. 2014), to have increased to approxi-

mately 65 000 in 2015. The OCC surveys estimated

118 000 kob for MFPA, indicating that the RSO count

did not detect 45% of kob, and that a correction factor of

1.81 should be cautiously applied to previous RSO-based

kob estimates. Similar conclusions (without assumptions

of a 1-year increase) may be drawn for hartebeest with

20% not detected, giving a correction factor of 1.25; and

waterbuck, with 49% not detected and correction factor

of 2.03. For elephant and buffalo, although the estimates

suggest that 10% and 15%, respectively, were not

detected, this is not conclusive due to the high standard

errors of the estimates.

Discussion

Our research shows that oblique camera-counts generate

population estimates that are significantly higher and

more consistent than those derived from RSO counts.

The potential impact of camera-counts on nation-wide

wildlife inventories is high. Our surveys increase the

national population estimate for Uganda kob by 77%,

from 77 759 (UWA, 2015) to 137 736. With improved

protection, high rainfall and low levels of predation, kob

in Block 1 have increased to a density of 78 kob.km�2,

well beyond the ‘record’ densities of 45 kob.km�2 in Toro

Game Reserve in the 1960s (Beuchner 1974), and proba-

bly the highest ever recorded in Uganda (Modha and

Eltringham 1976). The MFPA Uganda kob increase is

probably unprecedented for any wild antelope population

in recent times, with similarities to the exponential

increase of wildebeest in the Serengeti in the 1970s and

80s (Sinclair 1979; Hopcraft et al. 2015) and the George

River caribou herd in Canada from 1960–1990 (Messier

et al. 1988) - the latter sadly in catastrophic decline to

just 8000 of the estimated population of 800,000 in the

90s (Canada GNL 2018; Romea, 2018).

With regard to other species in MFPA, the Lelwel har-

tebeest, listed as Endangered by IUCN (IUCN Red List,

2017) and which was reduced in South Sudan from over

50 000 in the 1960s to just 1100 in 2007 (Fay et al.

2007), is shown in the camera-counts as having a rela-

tively healthy and increasing population in MFPA; this is

probably the most important population of this sub-

species globally. Elsewhere, for species that aggregate in

large numbers, camera-counts, might also positively alter

national species inventories, for example, wildebeest in

Maasai Mara in Kenya (Bhola et al. 2012), white-eared

kob in South Sudan (Fay et al. 2007) and Saiga antelope

in Kazakhstan (McConville et al. 2009). In the Serengeti,

with over one million wildebeest (Hopcraft et al. 2015),

periodic censuses of wildebeest and other migratory wild-

life are now entirely conducted by vertical aerial-point-

sampling (Norton-Griffiths 1973; TAWIRI-CIMU, n.d.).

In addition to more precise counting, camera-counts

have a number of key advantages over RSO-based sur-

veys. Firstly, the imagery provides the full sample, frozen

in time for verification and reanalysis of species numbers

and strip-widths, and for further exploration of factors

that determine visibility and distributions (Jacques et al.

2014; Schlossberg et al. 2016; Ndaimani et al. 2017). Sec-

ondly, while image interpreters need enthusiasm and

patience, they do not need to be experienced to deliver

consistent results. During the study, two interpreters

departed and were replaced with new graduates who, after

short training and mentoring, performed equally well.

These findings are reflected in other image interpretation

studies (Erwin 1982; Frederick et al. 2003) where

untrained interpreters outperformed advanced remote

sensing techniques (Terletzky and Ramsey 2016). Thirdly,

there are safety dividends in excluding RSO passengers in

low-level surveys and transiting to image-based methods;

SRFs are operated at low-levels, where bird strikes, power

lines and violent turbulence (especially in mountainous

area) are hazards, and where engine failure is potentially

catastrophic. Without RSOs who need to count at alti-

tudes of 350 ft or lower (PAEAS, 2014), aircraft with

camera-count systems can fly higher and still deliver

high-resolution imagery for counting; currently, the opti-

mum OCC height above ground level (HAGL) is set at

600 ft (Lamprey 2018).

The disadvantage of the OCC approach in its current

stage is the high volume of imagery generated, and associ-

ated labour costs for interpretation. In assessing costs, a

wildlife SRF budget is divided into three components; (1)

the technical components of design, oversight, data man-

agement, data checking, analysis, mapping (GIS work) and

reporting; (2) the cost of operating the aircraft; (3) the cost

of the data acquisition, whether this is by RSOs (for flight

allowances, salaries, accommodation in the field) or air-

photo interpreters (for remuneration costs). OCC surveys

do not increase components 1 or 2, although data checking

might add a small increment. This might be offset by a

cheaper aircraft, which could for example be a 2-seat air-

craft or even microlight, since we no longer need to carry

observers in a 4- or 6-seat aircraft. The larger cost of the

OCC method is in component 3, where current calculations

© 2020 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London 11
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indicate that the OCC method costs approximately 25%

more than RSO-based data acquisition. Given the offset

with aircraft costs, the budget for a OCC survey, carried

out at the same sampling intensity, is similar to that of an

equivalent RSO survey. For the 12% sample for MFPA

described in our study, the costs per sampled km2 (total

605 km2) are indicated as US $64.km�2, with 30% of this

cost for image interpretation. The generation of estimates

and distribution maps for each MFPA survey was achieved

in three months, which was acceptable for the wildlife man-

agers of the area.

Costs may also come down with the use of UAVs for

imaging surveys. While great progress has been made in

their use for wildlife surveys, endurance limitations

restrict their use to small areas (Wang et al. 2019). In

West Africa, for example, a UAV was successfully used

for an elephant SRF of a small reserve of 940 km2, but

limitations on range and reliability meant that the exer-

cise took many days to complete (Vermeulen et al. 2013).

It was concluded that the exercise cost 10 times as much

as with using a light aircraft. Today, a UAV may not

complete more than one 60 km transect in MFPA, but in

time, with improvements in reliability and endurance,

UAVs will be routinely used for large area counts.

A major constraint to OCC efficiency is that, in emu-

lating an RSO count, there are long stretches where no

animals are encountered. Thus, for example, in the MU3

survey, 2165 out of 23 927 images (9.3%) captured target

animals, and of these just 25, or 0.1% of the total, con-

tained elephants. An important immediate avenue for

investigation is to sub-sample the dataset to test if preci-

sion can be maintained at lower volumes of imagery

(Norton-Griffiths et al. 2015), and to determine how to

filter out true-negatives, the images with nothing in them.

New techniques in machine learning now offer the possi-

bility of species identification and enumeration, (Sirmacek

et al. 2012; Rey et al. 2017; Eikelboom et al. 2019; Tabak

et al. 2019), but it will take some time for experimental

techniques to be operationalized for full-scale SRFs.

Although research has focussed on specific species and

sites, an immediate need is to derive AI systems which

can simply filter out images with ‘something-of-interest’

from the > 80% of the true negatives. This leaves human

interpreters with a greatly reduced workload.

Improvements in visible spectrum and thermal IR aerial

sensors, both in manned aircraft and UAVs, now offer new

opportunities for animal counts (Terletzky 2013; Lethbridge

et al. 2019), with the highest successes in detecting objects

with high contrast, for example, seals or penguins on ice-

flows (Conn et al. 2014; McMahon et al. 2014; Borowicz

et al. 2018). Researchers are also now turning to high-resolu-

tion satellite sensors such as Ikonos, GeoEye-1, and World-

View-3 (Laliberte and Ripple 2003; Fretwell et al. 2017; Xue

et al. 2017), especially for counts of waterfowl and seabirds.

While there have been some advances in counting animals in

the open savannas in Africa (Yang et al. 2014), it will take

some years before these techniques can be applied in com-

plex wooded savannah environments.

The development of remote-sensing methods for wildlife

counts are moving forward rapidly, but at the same time

the traditional RSO-based SRF count remains valuable and

relevant to providing long-term wildlife trends to policy-

makers (Ogutu et al. 2016). To determine the status of

such key species as elephants, it is essential that efforts are

continued to improve and standardize RSO-based counts

(Jachmann 2002; Craig 2012; PAEAS, 2014). Where infor-

mation is needed on the distribution and abundance of

multiple species in a landscape, the OCC method described

in this paper is a significant step in the evolution of more

accurate and automated wildlife counting.
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