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Summary

1.

 

Models of wildlife population dynamics are crucial for sustainable utilization and
management strategies. Fluctuating ecological conditions are often key factors influ-
encing both carrying capacity, mortality and reproductive rates in ungulates. To be reli-
able, demographic models should preferably rely on easily obtainable variables that are
directly linked to the ecological processes regulating a population.

 

2.

 

We compared the explanatory power of rainfall, a commonly used proxy for vari-
ability in ecological conditions, with normalized differential vegetation index (NDVI), a
remote-sensing index value that is a more direct measure of vegetation productivity, to
predict time-specific conception rates of an elephant population in northern Kenya.
Season-specific conception rates were correlated with both quality measures. However,
generalized linear logistic models compared using Akaike’s information criteria showed
that a model based on the NDVI measure outperformed models based on rainfall measures.

 

3.

 

A predictive model based on coarse demographic data and the maximum seasonal
NDVI value was able to trace the large variation in observed season-specific conception
rates (Range 0–0·4), with a low median deviation from observed values of 0·07.

 

4.

 

By combining the model of  season-specific conception rates with the average
seasonal distribution of conception dates, the monthly number of conceptions (range
0–22) could be predicted within 

 

±

 

3 with 80% confidence.

 

5.

 

Synthesis and applications.

 

 The strong predictive power of the normalized differential
vegetation index on time-specific variation in a demographic variable is likely to be
generally applicable to resource-limited ungulate species occurring in ecologically variable
ecosystems, and could potentially be a powerful factor in demographic population modelling.
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Introduction

 

Inter-annual fluctuations in ecological quality have
been shown to influence reproduction and mortality
in numerous taxa (elk, Garrott 

 

et al

 

. 2003; wildebeest,
Sinclair, Dublin & Borner 1985; Pascual & Hilborn
1995; red kangaroo, McCarthy 1996; locusts, Todd 

 

et al

 

.
2002; weeds, Freckleton & Watkinson 1998), causing

large temporal variation in population growth rates
(Tuljapurkar 1990). Models that accurately predict such
time-specific population dynamics are of great man-
agement and economic importance (Gordon, Hester &
Festa-Bianchet 2004). Population viability analyses have
classically incorporated the variance in reproductive
rates as a stochastic parameter, thereby accounting for
estimated variability in population survival curves and
extinction probabilities, although error in these esti-
mates renders the results of such analyses questionable
(Beissinger & Westphal 1998). A similar approach is often
used in management or harvesting models (Xie 

 

et al

 

.
1999; Calvert & Gauthier 2005). If  the variability in
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reproductive rates is not easily estimated, it is generally
accounted for by choosing a conservative estimate
of allowable off-take at which level the population is
thought to be safe from the perils of overharvesting
(Milner-Gulland & Lhagvasuren 1998). Currently models
of demographic variation are commonly based on easy-
to-measure proxy variables, such as rainfall (Pascual &
Hilborn 1995; Madsen & Shine 1999; Georgiadis, Hack
& Turpin 2003; Ogutu & Owen-Smith 2003; Owen-Smith,
Mason & Ogutu 2005). However, to be more reliable, such
models should rely on direct measures of underlying
ecological processes regulating the focal population
rather than proxy factors (Brashares & Arcese 2002). Such
direct measures of time-specific ecological quality may
be available from high-resolution remote-sensing data.

Species that inhabit ecosystems with known limiting
factors are often modelled by basing population changes
on these salient factors (reviewed by Gaillard 

 

et al

 

. 2000).
For example, in tropical and subtropical savanna areas
with relatively low annual variation in temperatures and
day length, precipitation is the main factor deter-
mining seasons (Huntely 1982). In these areas, rainfall
has generally been used as an indirect measure of the
seasonal changes in green biomass in an ecosystem
(Sinclair, Mduma & Arcese 2000) and harvesting models
of savanna ungulates have been based on rainfall as a
predictor of time-specific carrying capacity and population
growth rate (Pascual & Hilborn 1995; Georgiadis, Hack
& Turpin 2003). However, apart from availability of
drinking water, rainfall mainly affects ungulates indi-
rectly via its effect on vegetation productivity. Records
of precipitation, temperature or day length may not reflect
changes in vegetation productivity if  other factors have
a compounding influence. For example, in savanna
ecosystems variability in rainfall pattern, soil type and
the degree of habitat degradation can have significant
effects on the response of vegetation to rain (du Plessis
2001; Wessels 

 

et al

 

. 2004). This indirect and often com-
plex connection between the proxy variable and the
actual factors influencing population dynamics may
result in low explanatory power of the model. Such error
may lead to repeated overharvesting or poorly conceived
conservation programmes, pushing the size of a popu-
lation to levels where recovery takes an extended period
or is not possible.

The normalized differential vegetation index (NDVI),
obtained from the NOAA-AVHRR (National Oceanic
& Atmospheric Administration-Advanced Very High
Resolution Radiometer) and SPOT-Vegetation
(Satellite Pour l’Observation de la Terre) programmes
is an index value calculated as the ratio between remote-
sensing red and near infra-red reflection. As such, it is
a measure of an area’s greenness and a direct measure
of  spatially explicit vegetation productivity (Goward
& Prince 1995) as well as a quantitative measure of
temporal variability in productivity (Scanlon 

 

et al

 

. 2002).
Hence, NDVI potentially provides a better, more direct,
measure for predicting time-specific rates of reproduc-
tion and mortality in resource-limited ungulates, by

circumventing some of the problems of methods based
on less direct measurements.

Season-specific variation in vegetation productivity,
measured by NDVI, is strongly correlated with concep-
tion rates in non-pregnant females in a wild, African
savanna elephant 

 

Loxodonta africana

 

 population, poten-
tially driving characteristic demographic fluctuations
in free-ranging elephant populations (G. Wittemyer, H.
B. Rasmussen, I. Douglas-Hamilton, unpublished data).
Furthermore, mortality rates have been linked to sea-
sonal quality in the same population (Wittemyer 

 

et al

 

.
2005), creating a strong combined effect of variability
in vegetation productivity on population dynamics. These
results were based on complete population knowledge
of known pregnancies and number of non-pregnant
females, and demonstrate the potential utility of NDVI
as a core parameter in demographic population models.

The aims of this study were three-fold. First, we com-
pared the ability of NDVI vs. rainfall to explain time-
specific variation in demographic processes in a wild
ungulate. We did this by investigating the explanatory
power of the two ecological correlates on season-specific
conception rates of the intensively monitored Samburu
elephant population (Wittemyer 2001; Wittemyer 

 

et al

 

.
2005). Secondly, we developed a predictive regression
model of season-specific conception rates based on NDVI
and coarse demographic data that are easily obtained
from populations with little or no prior knowledge.
Finally, we assessed the accuracy of our model for pre-
dicting the intraseason distribution of conceptions on
a fine temporal scale. To our knowledge, this is the first
time remote-sensing NDVI data have been used for
modelling temporal changes in demographic processes.

 

Methods

 

   

 

Long-term demographic data were obtained from a
free-ranging elephant population using the Samburu
and Buffalo Springs national reserves in northern Kenya,
approximately 60 km north of the equator at a longitude
of 37

 

°

 

E. The study area consists of semi-arid savanna
bushland dominated by 

 

Acacia tortilis

 

 and 

 

Commiphora

 

woody plant species and a large diversity of grasses and
forbs

 

,

 

 with patches of riparian woodland dominated by

 

Acacia elatior

 

 and 

 

Hyphaena coriacea

 

 along the semi-
permanent Ewaso Ngiro River and its tributaries
(Barkham & Rainy 1976). The annual rainfall pattern
in this ecosystem is bimodal but highly variable, with
the majority of the annual, average precipitation of
380 mm (range 143–847, years 1960–2002) occurring
during November–January and April–May (Fig. 1).
The study population inhabiting the national reserves
and surrounding areas consists of approximately 900
individuals (males, females and juveniles), which have
been individually identified using distinct features such
as ear markings (Douglas-Hamilton 1972; Moss 1988,
1996) and continuously monitored since 1997 by the
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Save the Elephants Samburu Project (Wittemyer 2001;
Wittemyer 

 

et al

 

. 2005). Out of the approximately 220
known adult females (defined as females that have
reproduced at least once), this study used demographic
data collected on a total of 170 that were observed
within the two national reserves (Fig. 2) more than
3 months year

 

−

 

1

 

 during the 7-year study period. These
females and their offspring were consistently found in
stable family groups, which have been quantitatively
defined (Wittemyer, Douglas-Hamilton & Getz 2005),
facilitating identification of mortality and birth. The
birth dates of calves can be accurately estimated
(

 

±

 

 1 week) up to 1 month after birth (Moss 1988, 1996,
2001). Of the 265 calves born between 1998 and 2004,

95% were observed within 1 month of their estimated
date of birth and the remaining were observed within
the season of birth. The date of conception was obtained
by subtracting the average gestation period of 656 days
(Moss 1983) from the date of birth, giving correspond-
ing dates of  conceptions for these calves between
mid-1996 and mid-2002. These highly accurate data,
including pregnant and non-pregnant periods for
individual females, were used to investigate the effect of
rainfall and NDVI on demographic processes in the study
population over a period of 7 years (13 wet seasons).

It was essential for the analysis presented here to
identify the seasonal-specific number of reproductively
available females in the study population. At any one

Fig. 1. Yearly rainfall recorded in Archer’s Post between 1960 and 2002; data between 1984 and 1993 are not available. Insert:
average yearly cumulative rainfall (data from 1996 to 2002).

Fig. 2. Core study area of Samburu (SNR) and Buffalo Springs (BSNR) national reserves and area used for NDVI extraction.
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time, females may be pregnant or potentially unreceptive
because of a recovery period after birth. Disregarding six
females that lost their calves immediately following birth
and conceived within the following 6 months, no females
conceived before 6 months after her last parturition date
(Fig. 3). Thus, females were defined as reproductively
available females from 6 months after their parturition
date to the conception date of their next calf. The number
of adult females in our study varied across seasons between
101 and 163, because of mortality and maturation of
juvenile females. After giving birth for the first time,
primiparous females from the study family groups were
incorporated into the pool of adult females and con-
sidered reproductively available females at the begin-
ning of the season in which they first conceived.

 

    

 

Daily rainfall measures were obtained from Archer’s
Post, the only long-term weather station in the area,
situated adjacent to the core study area (Fig. 2). Wet
seasons were defined as beginning during the first 10-day
period with 10 mm or greater rainfall (the approximate
amount of  precipitation required to get a vegetative
response) and ending during the last 10-day period with
rain followed by 30 days of 0 mm rainfall. Single-day

showers between 2-week periods of 0 mm rainfall were
not considered to illicit a seasonal change.

Remote-sensing 10-day composite recordings NDVI
values (S10 products) were obtained from the 

 



 

(1998, 1999, 2000, 2001, 2002) and 

 



 

 (1996, 1997,
1998, 1999, 2000) programs (data currently available free
at http://free.vgt.vito.be and ftp://disc1.gsfc.nasa.gov/
data/avhrr/, accessed February 2006). To cover the
entire study period (1996–2002), data from the 

 



 

and 

 



 

 programs were combined. The 2-year overlap
between 

 

  

 

 data (1998–2000) revealed a
shifted baseline for the two data sets and the 

 



 

 data
were subsequently calibrated to 

 



 

 level by adding
0·06 to all values. The mean 10-day NDVI values were
extracted from an area defined by a 10-km buffer around
permanent rivers in a 40-km radius from the centre
of the core study area, in which hills and mountains
were excluded (1771 km

 

2

 

) (Fig. 2). This area was chosen
because the study population seldom ventures further
than 10 km away from permanent water or on to steep
slopes (Save the Elephants unpublished radio-tracking
data). The NDVI data were extracted using ArcView3·2©
(ESRI, 380 New York Street, Redlands, CA, USA) and
WinDisp 5·12 (http://www.fao.org/giews/english/
windisp/windisp.htm, accessed February 2006). Using
NDVI data, wet seasons were defined as occurring
when values exceeded two standard deviations above
the dry season baseline, except during the 1998 El Niño
event when the two seasons were delineated by the
lowest NDVI value recorded during the 8-month period
of elevated NDVI values. NDVI values and rainfall
records for the study period are shown in Fig. 4 together
with the monthly number of conceptions. A breeding
season was defined as a combined wet–dry cycle start-
ing with the onset of a wet season and lasting until the
subsequent wet season. The defined breeding seasons
using either rainfall or NDVI were similar.

 

      
  

 

The numbers of reproductively available females (

 

N

 

avail

 

)
(range 22–96) that conceived (

 

N

 

conceiv

 

: range 0–50) or

Fig. 3. The proportion of females that conceived vs. the time
elapsed since they gave birth to their previous calf. This analysis
is based on 89 intercalving periods where two consecutive births
were known. The points with calf ages at 0·5 and 2·5 years are
indicated with vertical lines and used to parameterize the model.

Fig. 4. The 10-day rainfall totals recorded in Archer’s Post (columns), median NDVI values from the extracted study area (grey
line) and monthly numbers of conceptions (black line). The dry season NDVI baseline (solid line) and 2 SD from baseline (dotted
line) are indicated.
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did not conceive (

 

N

 

non-conceiv

 

: range 8–79) were obtained
for each season and the proportion of available females
conceiving (

 

R

 

avail

 

) was calculated as:

 

R

 

avail

 

 

 

=

 

 

 

N

 

conceiv

 

/

 

N

 

avail

 

eqn 1

Initially different indices for each of the two measures
of ecological quality were investigated. For rainfall, the
three indices investigated were the: (i) duration of the
rainfall-defined wet seasons (Rain

 

dur

 

); (ii) total amount
of rainfall per season (Rain

 

tot

 

); and (iii) greatest 10-day
amount of rainfall per season (Rain

 

max

 

). For NDVI, the
indices were the: (i) duration of the NDVI-defined wet
seasons (NDVI

 

dur

 

); (ii) sum of NDVI values above the
baseline level per wet season (NDVI

 

tot

 

); and (iii) maximum
recorded NDVI value during a season (NDVI

 

max

 

). The
relationships between each of these indices and the
number of conceiving/non-conceiving available females
(binomially distributed) were assessed using logistic
regression followed by inspection of the observed pro-
portion conceiving (

 

R

 

avail

 

) vs. predicted. Based on these
results, Rain

 

tot

 

 and NDVI

 

max

 

 were inverse-transformed
and Rain

 

max

 

 and NDVI

 

tot

 

 were natural log-transformed
to obtain linearity.

A degree of correlation (colinearity) existed between
indices of the same quality measure. For rainfall the
correlations were moderate, ranging between 0·26 and
0·58 (Rain

 

dur

 

 vs. ln-Rain

 

max

 

 

 

R

 

2

 

 

 

=

 

 0·26;  vs. ln-Rain

 

max

 

R

 

2

 

 

 

=

 

 0·58; Rain

 

dur

 

 vs. 

 

R

 

2

 

 

 

=

 

 0·43). However, for NDVI the
correlations between the indices were very high, ranging
between 0·84 and 0·93 (  vs. NDVI

 

dur

 

 

 

R

 

2

 

 

 

=

 

 0·84;
 vs. ln-NDVI

 

tot

 

 

 

R

 

2

 

 

 

=

 

 0·94; ln-NDVI

 

tot

 

 vs. NDVI

 

dur

 

R

 

2

 

 

 

=

 

 0·90). Colinearity does not prevent a combined
analysis; however, highly correlated factors require a large
data set to separate potential effects and the correlated
variables may interfere during analysis by ‘sharing’ their
explanatory power, reducing the effects assigned to each
(Zar 1999). Therefore only one of the NDVI indices,
NDVI

 

max

 

, was retained.
The quality indices were entered into combined

multiple logistic regression models using conceiving/
non-conceiving as the dependent variable. To assess which
combination of indices had the highest explanatory
power, the Akaike’s information criteria corrected for
small sample sizes (AICc) was used to compare alter-
native models (Burnham & Andersen 1998). Addition-
ally the deviation between the observed proportion of
females conceiving (

 

R

 

avail

 

) and the proportion predicted
by the models was compared.

 



 

Demographic data for models

 

Highly accurate demographic data are available only
for closely studied populations in which demographic
changes are often explicitly known (Gaillard 

 

et al

 

. 2000).
Thus, useful predictive models must be based on coarser
data that can be easily obtained from populations with

little to no prior information. The proportion of females
known to be pregnant (giving birth less than 22 month
later) and thus unable to conceive varied between 0·18
and 0·77 season

 

−

 

1

 

 in our study, demonstrating that the
total number of females is a poor estimate of the number
of reproductively available females for elephants. We
therefore investigated whether the age of a female’s
youngest calf could serve to predict the reproductive state
of its mother. Elephants have an average intercalving
period of 4·5 years, conceiving when the average age of
their youngest calf  is just over 2 years (Moss 2001). A
large fraction of females with calves older than 2 years
are thus likely to be pregnant. Additionally, females
with calves less than 6 months old did not conceive in
the study population regardless of ecological conditions
(Fig. 3). This is probably because of the high energetic
costs associated with lactation (Oftedal 1984). Thus, the
age class of a female’s youngest calf may serve as a useful
indicator for whether a female is available for reproduc-
tion. Assessment of  the approximate ages of  calves,
particularly those between the ages of 0 and 3·5 years,
are obtainable from field observations. Tusk eruption
in calves occurs at approximately the age of 2 years for
males and 2·5 years for females; calves under the age of
1 year can be accurately aged to within a month and
those under the age of 10 years to within 1 year (Moss
1988, 1996, 2001). To assess which group of females with
calves older the 0·5 years represented the best estimate
of 

 

N

 

avail

 

, the correlations between the known 

 

N

 

avail

 

 per
season and females with calves aged 0·5–2, 2·5 or 3·0 years
were compared.

 

Modelling steps and design

 

The significant indices of season-specific ecological
quality, determined from the analysis on complete
population knowledge, were correlated with the
demographic information estimated using the calf  age
index. The relationship was then used to develop a
regression-based model to estimate the season-specific
proportion of females conceiving (conception rates).
Data on season-specific conception rates (conceptions
resulting in birth per female per season) were available
for 13 seasons (7 years). We used the first six seasons for
model building and parameter estimation and the
remaining seven seasons for model validation.

Thereafter, we expanded our model to predict the
time-specific distribution of conceptions by combining
the intraseason temporal distribution of conceptions
with the predicted seasonal number of  conceptions
in the population. The intraseason distribution of con-
ceptions was estimated from our data set of known
conception events (based on calf birth) occurring within
the first six seasons. Based on our data set of known
conceptions, females have been shown to time conceptions
according to average wet season onset rather than
specific wet season onset (G. Wittemyer, H. B. Rasmussen,
I. Douglas-Hamilton, unpublished data), allowing a func-
tion describing the temporal distribution of season-specific

Raintot
−1

NDVI max
−1

NDVI max
−1
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conception events to be incorporated into the model.
The first six seasons (97 conception events) were used to
obtain the distribution of time delay between average
seasonal onset and conceptions. To evaluate the accu-
racy of  the distribution model for intraseason con-
ceptions, the known number of total conceptions per
season for the last seven seasons (43 months) was dis-
tributed using this model and compared with the actual
distribution. Thereafter, the distribution model was
applied to the estimated number of total conceptions per
season based on our regression model, and the dis-
tribution of  estimated conceptions was compared
with the actual (observed) distribution. Both actual and
predicted numbers of conceptions were calculated as
monthly sums (

 

±

 

 15 days). In all regressions involving
fractional data, the data were logit transformed.

 

Results

 

     
 

 

For all models a significant effect of quality indices on
conceptions was found (the eight highest ranked models
are shown in Table 1). The log likelihoods (LL) of these
models were compared and ranked using the AICc
weights (

 

w

 

i

 

) (Anderson, Burnham & Thompson 2000).
The one-parameter model based purely on NDVI

 

max

 

 had

the overall best (lowest) AICc score (824·94) (ranked
first in Table 1; model parameters shown in Table 2).
The best model based purely on rainfall (ranked sixth
in Table 1) contained all three rainfall indices but with
Rain

 

tot

 

 having the largest effect (model parameters shown
in Table 2). Despite being based on more parameters, this
purely rainfall-based model had a lower overall likeli-
hood compared with the NDVI

 

max

 

-based model (LL
rainfall 

 

−

 

437·84; LL NDVI

 

max

 

 

 

−

 

411·29) and a higher
deviation between observed and predicted proportions
of available females conceiving than the NDVI

 

max

 

-based
model (average deviation NDVI model 0·084; rainfall
model 0·15). This poorer performance was reflected in
the much higher 

 

∆

 

AICc score relative to the highest
ranked NDVI

 

max

 

 model (∆AICc = 59·40, wi < 0·01). All
models based purely on rainfall, without using the
NDVI index, had wi < 0·01, and the model based only on
Raintot was the lowest ranked of the compared models
(Table 1). Models incorporating both NDVImax and
rainfall parameters (ranked second to fifth in Table 1),
with ∆AICc < 2 and thus equally plausible given the
data (Burnham & Andersen 1998), were not significantly
better than the single-parameter NDVImax model. In
Fig. 5 the untransformed regression lines of predicted
conception proportions based on NDVImax (a) and on
the strongest rainfall index (Raintot) (b) are shown
together with observed Ravail. The extreme point in the
relationship between rainfall and Ravail occurred during

Table 1. Models based on different NDVI and rainfall indices compared using Akaike’s information criteria. Models are ranked
by ∆AICc, which indicates the difference between each model and the model with the lowest AICc (rank 1). The model based on
NDVImax (ranked 1) outperformed the model based on the three rainfall indices (ranked 6) with a ∆AICc = 59·40 between the two
models. Models with ∆AICc < 2 are equally plausible given the data (Burnham & Andersen 1998)
 

 

Rank Model Log likelihood Parameters (n) Model χ2 P AICc ∆AICc wi

1 NDVImax −411·29 1 < 0·0001 824·94 0·00  0·37
2 NDVImax, Raintot, Raindur −408·46 3 < 0·0001 825·59 0·64  0·27
3 NDVImax, Raintot −410·71 2 < 0·0001 826·62 1·68  0·16
4 NDVImax, Raindur −410·79 2 < 0·0001 826·78 1·84  0·15
5 NDVImax, Raintot, Raindur, Rainmax −407·95 4 < 0·0001 828·90 3·96  0·05
6 Raintot, Raindur, Rainmax −437·84 3 < 0·0001 884·35 59·40 < 0·01
7 Raintot, Raindur −439·93 2 < 0·0001 885·06 60·12 < 0·01
8 Raintot −447·57 1 < 0·0001 897·50 72·56 < 0·01

Table 2. Model likelihood and coefficients for the best logistic regression models based on pure rainfall and pure NDVI indices
 

 

Parameters d.f. Coefficients SE Wald P

NDVI model
1 −1·684 0·15 125·13 < 0·001

Constant 1 3·58 0·37 92·30 < 0·001
Whole model Log likelihood d.f. Average residual Percentage correct estimated Chi square P

−411·29 1 0·084 70% 150·77 < 0·001
Rainfall model

1 −175·68 31·03 32·1 < 0·001
ln(Rainmax) 1 0·477 0·25 4·11 = 0·043
Raindur 1 −0·013 0·003 16·68 < 0·001
Constant 1 −0·259 1·21 0·046 = 0·830

Whole model Log likelihood d.f Average residual Percentage correct estimated Chi square P
−437·84 1 0·15 59% 97·71 < 0·001

 NDVImax
−1

Raintot
−1
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the El Niño season, with very high rainfall (indicated
with * in Fig. 5). This season, however, was not an ‘out-
lier’ using NDVI as a quality measure, suggesting that
this was a valid data point. Excluding this season from
the analysis of rainfall did not alter the overall results.

 

The results on conception dates vs. calf  age showed that
females with calves less than 6 months could not be
considered available, likewise almost all females with
calves older than 3 years had already conceived (Fig. 3).
To find the best estimate for females that were available
based on coarser data accessible in less studied popula-
tions, the known fraction of females that were available
(Favail = Navail/Nfemales) was correlated with the fraction
calculated on females within three age classes of calves:
0·5–2·0, 0·5–2·5 and 0·5–3·0 years (Favail(est) = N0·5–x·x/
Nfemales). Favail and Favail(est) were compared (logit-
transformed fractions) rather than actual numbers because
of varying numbers of females between seasons. Females
with calves between 0·5 and 2·5 years were the most
strongly correlated with the actual numbers of available
females [logit(Favail) = 0·89 × logit(Favail(est)) + 0·6069, R2

= 0·82, P < 0·0001] and were subsequently used for the
estimate of the number of females available for repro-
duction (Navail(est)). Data on the estimated numbers of
conceiving/non-conceiving females (Nconceiv. and Navail(est) –
Nconceiv.) from the first six seasons were regressed
against  using logistic regression (LL = −178·8,
χ2 = 73·5, P < 0·0001), and a prediction of the proportion
of available females conceiving was obtained from the
regression equation by:

eqn 2

The estimated proportion of all females conceiving
per season i (Rfemales(est)) was then calculated as:

Rfemales(est) i = Favail(est) i × Ravail(est) i eqn 3

where Rfemales(est) i is the estimated proportion of females
conceiving during season i (resulting in birth 22 month
later); Favail(est) i is the fraction of all females with calves
between 0·5 and 2·5 years in season i (estimate of avail-
able females); NDVImax i is the maximum 10-day mean
NDVI value within season i; and Ravail(est) i is the estimated
proportion of  available females conceiving during
season i.

The actual (observed) season-specific proportion of
females conceiving (Rfemales i) varied between 0 and 0·4
(Fig. 6). The median deviation of the modelled Rfemales(est) i

from the actual (observed) values was 0·073. The model
had the highest deviations during the last three seasons.
The deviation from observed rates was negatively
correlated, although not significantly, to the fraction of
known non-pregnant females with calves older than
2 years (F2+) (model deviation = −0·06 × logit(F2+)
− 0·12, R2 = 0·34, n = 7, P = 0·17).

We developed this model further to predict
time-specific numbers of conceptions, which is nearly
equivalent to the number of oestrus females in the study
population as a result of  low pre-natal mortality
and high conception probability (G. Wittemyer, H. B.
Rasmussen, I. Douglas-Hamilton, unpublished data).
Combining the model for season-specific conception rates
(Rfemales(est) (i) from equation 3 with numbers of  females
in the population (Nfemales), the seasonal number of
conceptions (Nconception(est)) was estimated:

Nconception(est) = Rfemales(est) i × Nfemales i eqn 4

The intraseason distribution of conceptions during
the first six seasons did not deviate significantly from a
normal distribution ([normal(x, µ = 75·29, δ = 34·11): χ
P = 0·47] χ2 = 3·56, d.f. = 4, P = 0·47; Fig. 7). By com-
bining equation 4 with the temporal distribution of
intraseason conception events (Fig. 7), a model of the
monthly number of  conceptions was obtained. The
model starts at the average seasonal onset (day i = 1)
until the 200th day of the season, thereby distributing
99% of the estimated conceptions:

Fig. 5. Untransformed relation between maximum recorded
seasonal NDVI (NDVImax) (a) and the strongest rainfall index
(Raintot) (b) vs. the fraction of available females conceiving
during each season (n = 13). El Niño season indicated with *.
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eqn 5

The distributions were slightly overlapping during
late March–April, thus the total number of predicted
conceptions was calculated as the sum of  the two
overlapping distributions at each time step.

The distribution model (equation 5) was first evaluated
by distributing the known number of seasonal concep-
tions (Nconceptions) monthly, and then comparing that dis-
tribution to the known monthly numbers of conceptions
during the 43 months not used in the estimation of the
distribution parameter. The predicted monthly number
of conceptions (range 0–16) was significantly correlated
with the observed (range 0–22) (observed = 0·91 ×
predicted + 0·336; R2 = 0·67; n = 43; P < 0·0001), with
80% of months being within ± 2·8 and 90% within ± 3·5
conceptions.

The same steps were applied to the predicted seasonal
number of  conceptions calculated using equation 4
(Nconceptions(est)). Here the monthly numbers of conceptions
were also significantly correlated with the observed
number of conceptions (observed = 1·55 × predicted +

0·18, R2 = 0·60, n = 43, P < 0·0001), with 80% being
within ±3·1 and 90% within ±4·8 conceptions. The
known monthly numbers of conceptions are shown in
Fig. 8 together with the modelled distribution of known
and predicted seasonal conceptions. The modelled dis-
tribution using the known seasonal number of conceptions
generally followed the actual distribution in terms of
both timing and peak height, whereas the distribution
of the modelled predicted generally underestimated
values as a result of the underestimation of seasonal
number during the last two seasons.

Discussion

Both rainfall and NDVI were correlated with the pro-
portion of available females conceiving per season,
showing that elephant reproduction is highly influenced
by interseason fluctuations in ecological conditions.
However, the seasonal rainfall indices explained far less
of the variation, with a log-likelihood of −437·84, com-
pared with the model based on the maximum seasonal
NDVI value, with a log-likelihood value of −411·29
(∆AICc = 59·40), demonstrating that remotely sensed
NDVI data are a better indicator of the conditions influ-
encing reproduction than the traditionally used measure
of rainfall. Indeed, combined models containing both
rainfall and NDVI indices demonstrated that rainfall
did not add to the overall explanatory power of the
NDVI-based model. The relationship between rainfall
and NDVI was sigmoidal (data not shown), suggesting
that a certain threshold of  rainfall is needed before
triggering a response in the vegetation (foot of curve);
likewise a saturation point is probably reached where
any additional rain only marginally improves the con-
ditions for vegetative growth (top of curve). The largest
variation between rainfall and NDVI was found at
intermediate rainfall levels, probably linked to differences
in vegetative response related to how the season’s rain
fell (rainfall pattern) or other conditions affecting
vegetation growth (du Plessis 2001; Wessels et al. 2004).
The higher predictive power of  NDVI suggests that
during such seasons the level of  vegetative growth
rather than amount of rainfall causes the reproductive
response observed in the study population.
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Fig. 6. Observed and predicted seasonal conception rates of adult females. The first six seasons were used for model building and
parameter estimation and the last seven seasons for validation.

Fig. 7. The distribution of the time lag (days) between
average seasonal onset and the estimated date of conception
(n = 96) was normally distributed.
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The life-history traits of elephants necessitate the
estimation of the time-specific proportions of available
females in order to model the population demographic
processes. In species with shorter gestation periods,
where individual reproductive bouts occur seasonally
or annually, such variability may not need to be incor-
porated in a demographic model. To estimate the number
of available females, we used the number of females with
calves between 0·5 and 2·5 years to parameterize our
model. These coarser demographic data are available at
the time of conception, 2 years before the birth of a calf,
and are obtainable from populations not under intense
monitoring through relatively simple collection protocols
such as sample counts of female groups (see the Methods
for description of ageing calves).

In our study the first six seasons covered the complete
variation in observed vegetation productivity, measured
by NDVI, and a subsequent rerun of parameter estima-
tion using the complete data set only marginally changed
correlation parameters. However, six seasons may be
few for accurate estimation of parameters in some sys-
tems. The model based on NDVImax was able to trace the
variation in observed, season-specific reproductive rates
(range 0–0·4) and had a median deviation from observed
values of only 0·07. The model generally underestimated
the rates during seasons with large fractions of available
females whose youngest calves were between 2 and
2·5 years old. Such females are probably more likely
to conceive than females with calves between 0·5 and
2 years. This particularly occurred during the 2001 and
2002 seasons in which many females had 2–3-year-old-
calves, a remnant effect from the high conception rates
associated with the 1998 El Niño event. This indicates that
a stage-specific model with age class-specific parameters
for females with different aged calves could out perform
our age-unstructured model. Such a model will require
a larger, longer term data set to parameterize accurately
each age class, and is therefore beyond the capacity of
our current 7-year data set. The specific parameter values
estimated in the current study may be partially popu-
lation/area specific hence parameter validation to local
conditions is needed before application of this model to
other populations.

Our study focused only on conception rates, as the
accuracy and temporal resolution of elephant mortality
data in our study population did not allow for any
detailed modelling of time-specific mortality. However,
observational evidence from the study system suggests
that the same ecological variation governing reproduc-
tive rates affects mortality, especially among juveniles
(Wittemyer et al. 2005). Thus, it is likely that a NDVI-
based model could be used to predict mortality as
well as conception rates. Such a model may be highly
applicable to systems in which mortality is salient to
population growth rates (Portier et al. 1998). Post-
poning reproduction for a single season because of poor
vegetation productivity is less likely to affect the lifetime
reproductive success of elephants than that of shorter
lived ungulates with short-interval breeding cycles
(Stearns 1992). In the latter system, females may attempt
breeding regardless of specific seasonal conditions but
with these conditions impacting offspring survival or
future reproductive attempts (Trivers 1972). Despite
these likely species-specific differences, the better pre-
dictive power of NDVI for our study system suggests
that NDVI is a more accurate metric than rainfall for
the analysis of links between ecological variability and
demographic parameters such as mortality, reproduc-
tive rates and carrying capacity.

Time-specific information on the number of concep-
tions is important for population management (Gordon,
Hester & Festa-Bianchet 2004) as well as behavioural
studies of reproductive strategies and individual decision-
making processes (Emlen & Oring 1977), but is often
difficult to collect from free-ranging populations. By
applying a temporal distribution model of intraseason
conception events to the model predicting seasonal
numbers of conceptions, the monthly number of con-
ceptions in the study population could be predicted to
within ±3·1 events with 80% confidence. The occurrence
and duration of peaks in oestrus females were generally
well predicted by this model (Fig. 8), but the actual peak
sizes were not accurate because of the underestimation
of seasonal conceptions during the last seasons. The level
of accuracy attained in our fine scale temporal model
is, however, useful for assigning categorical levels (low,

Fig. 8. The temporal distribution of conception events obtained from calf  births (grey line), the distribution of known seasonal
number of conceptions based on the distribution model (dotted line), and distribution of estimated conceptions based on
available females and 10-day NDVI values (black line).
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medium and high) of receptive females at a 1-month
resolution. The resolution at which time-specific repro-
ductive rates can be predicted in other systems will depend
on the relationship between season-specific quality and
conception probabilities in combination with the degree
of variability in intraseason breeding phenology (Sinclair,
Mduma & Arcese 2000).

Prior to its employment, the characteristics and limi-
tations of NDVI in relation to the ecology of the system
to be modelled should be considered. An ecosystem-wide
measure such as NDVI (or rainfall) may be better for
predicting the population processes of generalist her-
bivores compared with a specialist or frugivorous species
dependent on specific plants or fruiting events. If popu-
lation processes are regulated by factors unrelated to
general vegetation productivity, such as predation or
disease (Sinclair, Dublin & Borner 1985; Gasaway,
Gasaway & Berry 1996), NDVI is not likely to be a good
factor with which to compare ecologically related changes.
NDVI only measures actively growing vegetation, there-
fore dry season or winter standing biomass cannot be
directly measured using this index. In addition, NDVI
cannot directly differentiate between vegetation types,
so grazers and browsers may respond differently to the
same NDVI values depending on which type of vegeta-
tion is responsible for the remotely sensed photosyn-
thetic activity. In predominantly wooded areas and
forests, the inter annual fluctuations in NDVI values
are limited and weakly correlated with relative vegeta-
tion growth (Scanlon et al. 2002), particularly in respect
to subcanopy growth, which cannot be evaluated by
remote sensing. With these limitations in mind, which
are also generally applicable to using rainfall as a proxy,
NDVI can provide a better more direct measurement of
the ecological quality influencing population dynamics
of herbivore species. For practical purposes NDVI may
also be more easily accessible in areas where few rainfall
stations exist or detailed rainfall records are not available.

In conclusion, the results presented for a free-ranging
elephant population demonstrate the utility of NDVI
in predicting season-specific conception rates. Our results
show that in this system remotely sensed NDVI data
have much greater predictive power than the widely used
rainfall proxy. These results are likely to be generally
applicable to ungulates occurring in rainfall-dependent
ecosystems and are promising for the use of remote-
sensing data in demographic population models. NDVI
data may offer an improvement over previous data sources
for the estimation of harvesting and conservation pro-
tocols. Our method has further implications for beha-
vioural studies of reproductive strategies and may provide
better insight into the potential effects of climatic and
direct human-induced changes in ecological conditions
on the demographic dynamics of a population.

Acknowledgements

We thank the Office of the President of the Republic of
Kenya and the Kenya Wildlife Service for permission to

conduct this research. NDVI data used by the authors
in this study were from the  Earth observation sys-
tem and from the Earth Observing System Pathfinder
Program. The  program provided the 

data and Earth Observing System Data and Informa-
tion System (EOSDIS), Distributed Active Archive
Centre at Goddard Space Flight Centre, provided the
 data. The International Elephant Foundation,
Iain Douglas-Hamilton’s Dawkins Prize Balliol College
Oxford, National Science Foundation, Fulbright
Fellowship Program, the Lincoln Park Zoo, Berkeley’s
Rocca Fellowship, and Save the Elephants donors pro-
vided funding for this study. Finally, we would like to
thank Anne Loison and an anonymous referee, who
offered detailed comments that helped improve this
manuscript.

References

Anderson, D.R., Burnham, K.P. & Thompson, W.L. (2000)
Null hypothesis testing: problems, prevalence, and an alter-
native. Journal of Wildlife Management, 64, 912–923.

Barkham, J.P. & Rainy, M.E. (1976) Vegetation of Samburu-Isiolo
Game Reserve. East African Wildlife Journal, 14, 297–329.

Beissinger, S.R. & Westphal, M.I. (1998) On the use of demo-
graphic models of population viability in endangered species
management. Journal of Wildlife Management, 62, 821–841.

Brashares, J.S. & Arcese, P. (2002) Role of forage, habitat and
predation in the behavioural plasticity of a small African
antelope. Journal of Animal Ecology, 71, 626–638.

Burnham, K.P. & Andersen, D.R. (1998) Model Selection and
Inference: A Practical Theoretic Approach. Springer, New
York, NY.

Calvert, A.M. & Gauthier, G. (2005) Effects of exceptional
conservation measures on survival and seasonal hunting
mortality in greater snow geese. Journal of Applied Ecology,
42, 442–452.

Douglas-Hamilton, I. (1972) On the Ecology and Behaviour of
the African Elephant: Elephants of Lake Manyara. DPhil
Thesis. Oxford University, Oxford, UK.

Emlen, S.T. & Oring, L.W. (1977) Ecology, sexual selection,
and evolution of mating systems. Science, 197, 215–223.

Freckleton, R.P. & Watkinson, A.R. (1998) How does temporal
variability affect predictions of weed population numbers?
Journal of Applied Ecology, 35, 340–344.

Gaillard, J.M., Festa-Bianchet, M., Yoccoz, N.G., Loison, A. &
Toigo, C. (2000) Temporal variation in fitness components
and population dynamics of large herbivores. Annual Review
of Ecology and Systematics, 31, 367–393.

Garrott, R.A., Eberhardt, L.L., White, P.J. & Rotella, J. (2003)
Climate-induced variation in vital rates of an unharvested
large-herbivore population. Canadian Journal of Zoology,
81, 33–45.

Gasaway, W.C., Gasaway, T.K. & Berry, H.H. (1996) Persistent
low densities of plains ungulates in Etosha National Park,
Namibia: testing the food-regulating hypothesis. Canadian
Journal of Zoology, 74, 1556–1572.

Georgiadis, N., Hack, M. & Turpin, K. (2003) The influence
of rainfall on zebra population dynamics: implications for
management. Journal of Applied Ecology, 40, 125–136.

Gordon, I.J., Hester, A.J. & Festa-Bianchet, M. (2004) The
management of wild large herbivores to meet economic,
conservation and environmental objectives. Journal of Applied
Ecology, 41, 1021–1031.

Goward, S.N. & Prince, S.D. (1995) Transient effects of climate
on vegetation dynamics: satellite observations. Journal of
Biogeography, 22, 549–564.



376
H. B. Rasmussen, 
G. Wittemyer & 
I. Douglas-
Hamilton

© 2006 The Authors.
Journal compilation 
© 2006 British 
Ecological Society, 
Journal of Applied 
Ecology, 43, 
366–376

Huntely, B. (1982) Southern African savannas. Ecology of
Tropical Savannas (eds B. Huntley & B. Walker), pp. 101–
119. Springer Verlag, Berlin, Germany.

McCarthy, M.A. (1996) Red kangaroo (Macropus rufus)
dynamics: effects of rainfall, density dependence, harvesting
and environmental stochasticity. Journal of Applied Ecology,
33, 45–53.

Madsen, T. & Shine, R. (1999) The adjustment of reproductive
threshold to prey abundance in a capital breeder. Journal of
Animal Ecology, 68, 571–580.

Milner-Gulland, E.J. & Lhagvasuren, B. (1998) Population
dynamics of the Mongolian gazelle (Procapra gutturosa): an
historical analysis. Journal of Applied Ecology, 35, 240–251.

Moss, C.J. (1983) Estrous behavior and female choice in the
African elephant. Behaviour, 86, 167–196.

Moss, C.J. (1988) Elephant Memories: Thirteen Years in the
Life of an Elephant Family. William Morrow, New York, NY.

Moss, C.J. (1996) Getting to know a population. Studying
Elephants (ed. K. Kangwana), pp. 58–74. African Wildlife
Foundation, Nairobi, Kenya.

Moss, C.J. (2001) The demography of an African elephant
(Loxodonta africana) population in Amboseli, Kenya. Journal
of Zoology, 255, 145–156.

Oftedal, O.T. (1984) Pregnancy and lactation. Bioenergetics
of  Wild Herbivores (eds R.J. Hudson & R.G. White),
pp. 215–238. CRC Press Inc., Boca Raton, FL.

Ogutu, J.O. & Owen-Smith, N. (2003) ENSO, rainfall and
temperature influences on extreme population declines
among African savanna ungulates. Ecology Letters, 6, 412–
419.

Owen-Smith, N., Mason, D.R. & Ogutu, J.O. (2005) Corre-
lates of survival rates for 10 African ungulate populations:
density, rainfall and predation. Journal of Animal Ecology,
74, 774–788.

Pascual, M.A. & Hilborn, R. (1995) Conservation of harvested
populations in fluctuating environments: the case of the
Serengeti wildebeest. Journal of Applied Ecology, 32, 468–
480.

du Plessis, W.P. (2001) Effective rainfall defined using measure-
ments of grass growth in the Etosha National Park, Namibia.
Journal of Arid Environments, 48, 397–417.

Portier, C., Festa-Bianchet, M., Gaillard, J.M., Jorgenson, J.T. &
Yoccoz, N.G. (1998) Effects of  density and weather on
survival of bighorn sheep lambs (Ovis canadensis). Journal
of Zoology, 245, 271–278.

Scanlon, T.M., Albertson, J.D., Caylor, K.K. & Williams, C.A.
(2002) Determining land surface fractional cover from NDVI
and rainfall time series for a savanna ecosystem. Remote
Sensing of Environment, 82, 376–388.

Sinclair, A.R.E., Dublin, H. & Borner, M. (1985) Population
regulation of  Serengeti wildebeest: a test of  the food
hypothesis. Oecologia, 65, 266–268.

Sinclair, A.R.E., Mduma, S.A.R. & Arcese, P. (2000) What
determines phenology and synchrony of ungulate breeding
in Serengeti? Ecology, 81, 2100–2111.

Stearns, S.C. (1992) The Evolution of Life Histories. Oxford
University Press, Oxford, UK.

Todd, M.C., Washington, R., Cheke, R.A. & Kniveton, D.
(2002) Brown locust outbreaks and climate variability in
southern Africa. Journal of Applied Ecology, 39, 31–42.

Trivers, R.L. (1972) Parental investment and sexual selection.
Sexual Selection and the Descent of Man (ed. B. Campbell),
pp. 136–179. Aldine, Chicago, IL.

Tuljapurkar, S. (1990) Population Dynamics in Variable Environ-
ments. Springer-Verlag, New York, NY.

Wessels, K.J., Prince, S.D., Frost, P.E. & van Zyl, D. (2004)
Assessing the effects of human-induced land degradation in
the former homelands of northern South Africa with a 1 km
AVHRR NDVI time series. Remote Sensing of Environment,
91, 47–67.

Wittemyer, G. (2001) The elephant population of Samburu
and Buffalo Springs national reserves, Kenya. African Journal
of Ecology, 39, 357–365.

Wittemyer, G., Daballen, D.K., Rasmussen, H.B., Kahindi, O. &
Douglas-Hamilton, I. (2005) Demographic status of elephants
in the Samburu and Buffalo Springs national reserves,
Kenya. African Journal of Ecology, 43, 44–47.

Wittemyer, G., Douglas-Hamilton, I. & Getz, W.M. (2005)
The socio-ecology of elephants: analysis of the processes
creating multi-tiered social structures. Animal Behaviour,
69, 1357–1371.

Xie, J.L., Hill, H.R., Winterstein, S.R., Campa, H., Doepker, R.V.,
Van Deelen, T.R. & Liu, J.G. (1999) White-tailed deer man-
agement options model (DeerMOM): design, quantification,
and application. Ecological Modelling, 124, 121–130.

Zar, J.H. (1999) Biostatistical Analysis. 4th edn. Simon &
Schuster, Upper Saddle River, NJ.

Received 23 February 2005; final copy received 4 November 2005 
Editor: E. J. Milner-Gulland


