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Sleeping behavior is a critical but understudied aspect of 
animal spatial ecology, with selection of daily rest stops fun-
damental to survival (Lima et al. 2005). An animal tends to 
be most vulnerable to predation during sleep, which makes 
sleep for most animals a risky behavior (Anderson 1998). 
In addition, lack of and disruption to sleep can have serious 
physiological costs (McCoy and Strecker 2011). Rest/sleep 
site use has been linked to parasite prevalence (Butler and 
Roper 1996) and access to critical resources (Janmaat et al. 
2014). As such, investigations into the spatial arrangements 
of rest and sleep behavior can offer important insights to 
animal ecology.

Graph (network) theory provides a powerful framework 
for investigating processes that have some aspect of connec-
tivity (Newman 2010), with recent applications in biology 
studying the effect of landscape structure (Minor and Urban 
2007, Garroway et al. 2008). While widely used to assess 
contact structure in animals (Newman 2003), application 
of graph theory to study animal spatial behavior has been 
limited to the analysis of array based data (Jacoby et al. 
2012). Graph theoretic approaches allow the analysis of 
movement-based connectivity in animal ranges and spatially 
discrete behaviors such as resting. Rest sites can be conceived 
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Analysis of an animal’s space use was traditionally focused 
on Eulerian (diffusive) characterizations of animal distribu-
tion patterns (Turchin 1998). With our increasing ability 
to collect accurate location data, that focus is shifting to 
explore the details of individual movements (Lagrangian 
characterization). This significant shift in emphasis allows 
for a more accurate characterization of the influence of 
exogenous and endogenous processes, and thus provide 
deeper insight to animal spatial behaviors (Nathan et al. 
2008). In particular, the quantification of location-specific 
movement patterns and properties has been applied to 
infer landscape use patterns (McClintock et al. 2012, 
Polansky et al. 2015) and also to quantify the impacts of 
habitat selection on inter-specific interactions (Northrup 
et al. 2015). Such approaches allow the extension of animal 
cost-benefit and risk analysis beyond the traditional focus 
on foraging theory (Marquet et al. 2014) and foraging 
strategies (Morales et al. 2004) to other spatially structured 
behaviors, such as rest, which can be as important (Lima 
et al. 2005).

Graph theory illustrates spatial and temporal features that structure 
elephant rest locations and reflect risk perception
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Understanding the spatial structuring of animal behaviors and how they link landscapes can be critical for conservation 
management. This emerging field has been greatly facilitated by technologically advanced acquisition and analysis of 
data on animal movements. The framework of graph theory, which directly quantifies network connectivity properties, 
provides a useful addition to this tool set. Using a novel application of graph theory, we investigate the structure and 
patterning of African elephant Loxodonta africana rest sites, a potentially critical feature structuring spatial properties of 
animal populations. Elephants in the study rested intermittently and for short durations (1–3 rests d–1, lasting 3–5 h total). 
They switched circadian rest patterns according to landscape attributes, resting more during the day and further from 
permanent water in areas with high human density outside protected areas. Within protected areas and during the dry 
season, elephants showed clustering and sequential use of rest nodes (repeated motifs). Repeated use of specific rest nodes 
(self-looping) was more frequent than expected if rest nodes were chosen at random, particularly when outside protected 
areas further from water, indicating the importance of preferred rest sites. Our results suggest that elephants adjust resting 
behavior when in human-dominated areas, using preferred resting sites presumably in locations that reduce the risk of 
interactions. This study demonstrates how graph theory may be used practically to gain novel insight into behaviours, such 
as resting, that are discrete in time and space. Furthermore, analysis of the spatial and network properties of rest sites, given 
an individual’s susceptibility when engaged in rest behavior, allowed characterization of spatio-temporal risk perception, 
providing a powerful behavioral based means to quantify the landscape of fear.
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as spatially static nodes connected across the landscape by 
movement (simplified as connections between nodes or 
network edges). Leveraging graph theory to investigate the 
spatial structure of this behavior can offer insight to rest site 
connectivity and spatially and temporally structured use 
patterning (Barthelemy 2011, Holme and Saramäki 2012).

Here we investigate resting behavior of free-ranging 
African elephants Loxodonta africana, a generalist herbivore, 
using a graph theoretic approach to identify patterns of 
movement across defined rest site networks, with particular 
attention paid to the patterning of rest site visitation. The 
manner in which elephants alter rest behavior relative to 
risk (nocturnal/diurnal patterning in and outside protected 
areas), permanent water and ecological dynamics (seasonal-
ity) were assessed. Given the importance of rest site selection 
to animal survival, our analysis provides important insight 
to species perceptions of their landscape of fear (Brown et al. 
1999). The implications of results to elephant ecology, risk 
assessment and the utility of graph theoretic approaches for 
examining the spatially structured behaviors are discussed.

Methods

GPS positions were collected on nine female elephants 
(representing nine socially distinct core groups (Wittemyer 
et al. 2005) containing 8–17 individuals) monitored as part 
of a long term research project (Wittemyer et al. 2013) in 
and around the Samburu and Buffalo Springs National 
Reserves Complex (lying approximately 0.5°N, 37.5°E) in 
northern Kenya from January 2000 to March 2007. The 
reserves complex covers a 220 km2, though the ranges of the 
studied elephants encompass a region greater than 4000 km2. 
GPS sampling resolution was predominantly on an hourly 
basis, with fix success per collar exceeding 90%. On aver-
age, 25  413 h were collected per group (minimum: 14  529 
h, maximum: 43 072 h where the variation in coverage was 
attributable to differences in collar life span).

Resting event definition and analysis

Resting events were defined using activity sensors and dis-
placement distances collected from GPS collars (see supple-
mental information) and categorized based on the time of 
day (nocturnal or diurnal), season (wet or dry) and protective 
status of a rest location (within or outside a nationally desig-
nated protected area). Wet or dry season was defined using 
normalized difference vegetation index (NDVI) as described 
elsewhere (Wittemyer et al. 2007b) and rest events were cat-
egorized temporally as ‘day’ (between 06:00 and 17:59) or 
‘night’ (between 18:00 and 05:59) (note: seasonal differences 
in daylight hours are minor since the study site is near the 
equator). We then quantified the 1) mean number of day 
and night rests per day, 2) mean day and night rest dura-
tion, and 3) mean day and night restlessness index, defined 
as the proportion of days or nights an elephant did not rest. 
The mean number of rests per day and the restlessness index  
were calculated from days and nights with complete data 
(i.e. 12 GPS points for each day or night).

We investigated the relationship between these three 
measureable quantities and covariates representing a rest 

site’s 1) protected area status (in or out), 2) timing (day or 
night), and 3) season (wet or dry) using generalized linear 
mixed effect models (GLMMs) implemented in the lme4 
R package (Bates et al. 2013). Elephant identity was incor-
porated as a random effect in the models. We used AIC to 
rank models composed of main, additive, and interactive 
effects (Burnham and Andersen 1998). Where models were 
marginally different (difference in AIC weight  0.95), 
parameter coefficients in secondary models were inspected 
for influence (95% confidence intervals did not overlap 0). 
The top ranked model was used to infer relationships in 
all cases given that the additional parameters in secondary 
models were weakly informative (Arnold 2010). Models 
accounting for  95% of the AIC weight are presented in 
the Supplementary material Appendix 1.

Spatio-temporal resting network

Resting events were collated into nodes by clustering event 
locations using the hclust function in the ‘stats’ R library 
(R Core Team) using the best fitting average-linkage hierar-
chal clustering method (Supplementary material Appendix 1, 
Table A1). The spatio-temporal structure of rest nodes was 
then analyzed using a graph-theory framework, with rest 
nodes in the graph connected by edges defined by observed 
movements between nodes. In this network, edge weights 
represent the number of times resting occurred consecutively 
in two nodes and node strength (i.e. weighted degree) repre-
sents the number of rests that occurred in a node.

We analyzed this resting network as: a) an undirected 
unweighted static network, b) an undirected weighted static 
network (i.e. edge weights representing movement between 
nodes), and c) a time-ordered network (i.e. edges ordered 
sequentially in time) constructed for each of four treatment 
categories (i.e. wet/dry and protected/unprotected). From 
these networks, we derived three metrics (see Supplementary 
material Appendix 1 for formal definitions) that capture 
different structural components of the rest network: 1) 
global clustering coefficient (i.e. transitivity) of the undi-
rected unweighted static network (a measure of network 
interconnectedness), 2) the mean fraction of node strength 
from self-loops in the undirected weighted static network (a 
measure of the propensity of consecutive return to nodes), 
and 3) the normalized number of repeated paths in the 
time-ordered network (a measure of the propensity to con-
secutively use three rest nodes). The normalized number of 
repeated paths in the time-ordered network is an example of 
a temporal motif (repeated sequence), since it represents a 
subgraph with topologies that re-occur in time (Holme and 
Saramäki 2012).

On each network, 10 000 iterations of a random walk 
(see Supplementary material Appendix 1 for details) were 
implemented in order to derive distributions of each network 
metric and the degree for each node that would be expected 
if rest sites were selected at random (Supplementary mate-
rial Appendix 1, Table A2). The observed network structure 
and node use statistics were then compared to the distribu-
tions obtained from the results of the 10 000 random walks. 
Significance was defined as the observed metric or node 
value being larger than or equal to the 95th percentile of 
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the corresponding distribution (for the specific node or met-
ric) derived from the random walks. Preferred nodes were 
defined as nodes with a strength (i.e. number of rests) that 
was significantly larger than expected based on the random 
walks.

Network metrics were analyzed using a GLMM frame-
work with model selection as described previously, where 
elephant group identity was included as a random variable 

and all continuous covariates were standardized x x−



σ

. 

We modeled node degree (count data) using the negative 
binomial distribution (to avoid over-dispersion) in rela-
tion to a location’s 1) protected status, 2) node size (km2), 
3) nearest node distance, 4) proportion of node use that 
was diurnal, 5) group dominance rank (as defined previ-
ously in Wittemyer and Getz (2007)) and 6) distance to 
water. Preferred nodes (1 or 0) were modeled as a Bernoulli-
distributed variable with a logit-link function in relation to 
1) protected status, 2) node size, 3) nearest node distance, 
4) proportion of node use that was diurnal, 5) group domi-
nance rank, and 6) distance to water. The propensity to self-
loop (proportion data) was modeled using a binomial link 
function in relation to 1) rest node size, 2) nearest node 
distance, 3) location protected status, 4) season, 5) elephant 
group dominance rank and 6) distance to water. The num-
bers of repeat motifs (here defined as consecutive use of 
three nodes in a specified order resulting in 0 biased count 
data) were modeled using a zero-inflated Poisson model as 
a function of 1) location protected status, 2) proportion of 
node use that was diurnal, 3) group dominance rank and 4) 
distance to water. Dominance rank data were derived from 
previous studies (Wittemyer and Getz 2007). Clustering 
coefficients, given that they were network wide metrics and 

therefore could not be assigned spatially or temporally spe-
cific attributes, were not modeled. All metrics and models 
were computed using R (R Core Team).

Results

Elephants tended to rest in the late night hours between 
midnight and dawn, with a less predictable resting bout dur-
ing midday (Fig. 1a). When resting, rest duration tended to 
be short (Fig. 1b), averaging 1.4 (standard deviation: 0.78) 
h during the day and 1.8 (standard deviation: 1.3) h during 
the night. In addition to time of day, rests were also struc-
tured by season and location (Fig. 2). The top models of 
rest properties (rest duration, number of rests/day and rest-
lessness; Supplementary material Appendix 1, Table A3) 
demonstrated more and longer resting during the night,  
outside protected areas and during the dry season (Table 1). 
Rest events were markedly closer to rivers during the day rel-
ative to night within protected areas (Wilcoxon sign-ranked 
test V  4, p  0.027), but demonstrated the opposite effect 
outside protected area though the differences in distance 
were weaker (V  37, p  0.098). Seasonal differences were 
also apparent with fewer rests in protected areas during the 
wet season (relative to the dry season, Fig. 2).

Clustering of rest events into nodes demonstrated that 
elephant groups used a diverse array of rest sites, averag-
ing 402 unique sites within their range. Rest nodes were 
typically larger within protected areas (13 ha) than outside 
protected areas (7.6 ha; Fig. 3a, b). In addition, node den-
sity was larger within protected area, averaging 0.46 nodes 
km–2 (standard deviation: 0.18) relative to 0.17 nodes km–2 
(standard deviation: 0.06) outside protected areas. Degree 
(number of adjacent vertices) per node averaged 6.8 across 

Figure 1. Histograms of the timing and duration of rest events demonstrated that (a) rest events most commonly occurred during the late 
night hours or midday and (b) rest events tended to be short in duration.
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elephant groups, but varied relative to protected status of 
location (Fig. 3c, d). The top model of degree demonstrated 
an increase with node size, proximity to permanent water 
and inside protected areas (where the water effect was pro-
nounced inside protected areas), but decrease of degree when 
closer to its nearest neighbor node (Table 2). In addition, 
nodes used more frequently during the day tended to have a 
larger degree than those used more at night (Table 2).

Analysis of rest node network structure revealed hetero-
geneity driven by strong rest node preferences. An average of 
44% of rest bouts occurred in preferred nodes, which rep-
resented less than 10% of all nodes. These preferred nodes 
were larger, used more often during the day, tended to be in 
protected areas, further from permanent water (unless inside 
protected areas) and closer to other nodes relative to non-
preferred nodes (Table 2).

Assessment of rest network structure indicated that for 
most individuals dry season clustering coefficients, self-loop 
strength and number of repeated motifs were significantly 

Figure 2. (a) Number of rest bouts per day, (b) duration and (c) restlessness by treatment (season and location specific protective status) and 
temporal (day and night) category. Values presented are means (with standard errors) across the nine elephants.

Table 1. Results from the top models of rest properties (rest duration, 
number of rest d–1, and restlessness).

Response variable Covariate Coefficient (95% CI)

Rest duration
Season 0.488 (0.466–0.510)
Protected 0.047 (0.022–0.072)
Time ‒0.135 (‒0.166–‒0.104)
Protected  Time ‒0.218 (‒0.263–‒0.173)

No. rests d–1

Season 0.173 (0.134–0.212)
Protected 0.167 (0.122–0.212)
Time ‒0.245 (‒0.304–‒0.186)
Protected  Time ‒0.706 (‒0.773–‒0.639)
Season  Time 0.202 (0.141–0.263)

Restlessness
Season 0.169 (0.022–0.316)
Protected 0.858 (0.687–1.029)
Time ‒0.637 (‒0.792–‒0.482)
Protected  Time ‒1.934 (‒2.134–‒1.734)
Season  Time 0.596 (0.420–0.772)
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protected areas, further from water and during the dry season 
(Table 2). Repeat motifs were found to be more common in 
nodes in protected areas, closer to permanent water (though 
further inside protected areas) and those used primarily dur-
ing the day (Table 2). Dominance rank was not included in 
any of the top models of network metrics (Supplementary 
material Appendix 1, Table A4).

greater than predicted from random networks (Table 3). 
Conversely, wet-season network repeated motifs did not 
differ from random expectation, while for some individu-
als clustering coefficient and self-loops strength were sig-
nificantly larger than random. Stronger clustering of rest 
networks occurred within protected areas relative to outside 
(Table 3), while self-looping was more common outside 

Figure 3. The resting network of the elephant ‘Amina’ in northern Kenya. Across all elephants studied, (a) rest node degree (node size) 
tended to be higher inside protected areas (black polygons), while self looping (node color scale) tended to be greater outside protected 
areas. (b) Circadian patterns in rest node use (proportion night versus day; color scale) related to proximity to water and differed strongly 
in versus out of protected areas, while rest site area (node size) varied across the landscape. Lines between nodes are the network edges (i.e. 
connecting consecutive rests).
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properties being strongly influenced by the rest site’s (node) 
protective status. For example, unprotected areas saw more 
frequent, longer rests further from water during the day 
(when humans are most active) versus less frequent resting 
(a higher restlessness index) during the night and during the 
dry season. Within protected areas, rests were more com-
mon and longer at night and occurred markedly further 
from water (average twice as far from water) relative to day 
time rests. Regardless of time of day, rest sites outside pro-
tected areas were further from permanent water. In addition, 
we found repeated use (self-loops as discussed below) to be 
most common outside protected areas (Fig. 3a). This loca-
tion mediated circadian switch in rest likely reflects a tactic 
aimed to minimize interaction with humans and livestock, 
comparable to shifts recorded in elephants’ movement pat-
terns (Wittemyer et al. 2008), nocturnal reliance on water 
sources (Wittemyer et al. 2007a) outside relative to inside 
protected areas, and crop raiding strategies (Graham et al. 
2009). By resting more during the day in preferred (safe) 
locations when outside protected areas, elephants minimize 
their likelihood of interacting with people, their primary 
predator in the system (Wittemyer et al. 2013). Thus, resting 
strategies in elephants offer insight to the spatio-temporal 
structure of risk perception as has been found for other spe-
cies (Anderson 1998) allowing characterization of species’ 
‘landscape of fear’ (Brown et al. 1999). Applying teleme-
tered movement behavioral analysis (as done here with rest) 
to characterize and interpret risk perception offers an impor-
tant avenue for landscape risk mapping that improves upon 
some of the limitations of applying mortality site or point 
observational data to such aims. Specifically, continuous 
tracking data avoids sampling bias introduced by the latter 
and increases sample size relative to the former.

Interpreting rest network structure

Network-based approaches were recently applied to study 
the spatial connectivity of habitat use in animal ecology 
(Jacoby et al. 2012). Here, we used movement to define net-
work attributes and examine their spatial context, specifi-
cally defining nodes as the spatial locations of discrete resting 
behavior and their edges as observed movements between 
nodes. Comparable to effects in social networks (Newman 
2003), we found strong heterogeneity in node degree driven 

Discussion

Rest, and its absence, can strongly influence an animal’s  
health and performance, while also affecting social interac-
tions and predation (Anderson 1998). Clearly, the study of 
rest strategies can provide important ecological insight on a 
species, yet generally rest patterns and locations tend to be 
ignored in studies of behavior and movement ecology. Our 
study characterized African elephant resting strategies, deter-
mining that elephants generally had short rest periods mul-
tiple times a day (1–3 d–1, lasting 3–5 h total). These relatively  
short rest periods are likely a function of forage requirements 
related to body size (Owen-Smith 1988). Rests occurred in 
numerous sites, spaced across the ecosystem, though pref-
erences for sites were apparent and important to gaining 
understanding of landscape use patterns more generally.

There was a marked behavioral shift in rest strategies 
relative to the protected status of a location, with all rest 

Table 2. Results from the top models of network properties (degree, 
preference, repeat motifs, and self-loops).

Response variable Covariate Coefficient (95% CI)

Degree
Node area 0.376 (0.368–0.383)
Protected 0.177 (0.140–0.214)
Time 0.232 (0.191–0.273)
Distance to nearest 

neighbor
‒0.418 (‒0.479–‒0.357)

Water ‒0.020 (‒0.044–0.004)
Protected  Water ‒0.079 (‒0.116–‒0.042)

Preferred nodes
Node area 2.061 (1.869–2.531)
Time 1.784 (1.312–2.256)
Distance to nearest 

neighbor
‒1.319 (‒2.236–‒0.402)

Protected 0.761 (0.379–1.143)
Water 0.683 (0.454–0.912)
Protected  Water ‒0.420 (‒0.753–‒0.087)

Repeated paths
Protected 1.128 (0.809–1.447)
Time 0.632 (0.391–0.873)
Water ‒1.117 (‒1.485–‒0.749)
Protected  Water 0.877 (0.495–1.269)

Self-loops
Season 0.393 (0.107–0.679)
Protected ‒0.313 (‒0.599–‒0.027)
Water 0.160 (0.040–0.280)

Table 3. Resting network metrics, presented as means and standard error across the nine elephants, by treatment group. Values in brackets 
represent the number of elephant resting networks with metrics that were significantly higher than that of the corresponding random 
networks (p  0.05; see Supplementary material Appendix 1 for a description of how the random networks were generated).

Treatment group

Wet, protected 0.154  0.021 (3) 0.204  0.013 (9) 0.006  0.003 (2)
Dry, protected 0.229  0.022 (7) 0.259  0.017 (9) 0.031  0.009 (5)
Wet, unprotected 0.129  0.016 (1) 0.207  0.011 (9) 0.005  0.002 (1)
Dry, unprotected 0.188  0.028 (7) 0.261  0.015 (9) 0.014  0.006 (4)
Overall 0.203  0.015 (7) 0.213  0.010 (9) 0.022  0.005 (5)
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2007), we could not discern connotations of this in our 
rest networks.

Applications of the network approach to animal 
movement

Studying spatial behavior patterns using graph theory, in this 
case the use of rest sites, provided insights to interconnec-
tivity of sites, both temporally and geographically. Elephant 
rest site use demonstrated strong patterning, structured in 
part by season, landscape context (protected area status and 
distance to permanent water) and node location within the 
network. Our results identified landscape features apparently 
important to the elephants, which is an output that may be 
generally applicable to other species and systems.

While a powerful tool for the study of connectivity, 
graph theoretic approaches may not be as powerful to assess 
site specific characteristics in comparison to other methods 
such as a resource selection framework (Manly et al. 2002). 
Information on landscape-level covariate information was 
limited in our system; in particular, information on canopy 
height and density (related to shade and cover) and human 
activity given the semi-nomadic lifestyles of pastoralists in 
the region, precluding such an approach. Holistic studies 
assessing the spatial properties of different behaviors are 
needed to ensure proper inference on animal ecology. Last, 
we point out that this study concerns rest and resting pat-
terns, and makes no inferences as to when and where in the 
observed patterns the elephants actually slept, as defined by 
REM sleep. Analysis of activity sensor data conducted here 
suggests that midday rest is mostly that, often standing up, 
while early morning rest (around 4 am) may often be sleep, 
lying down.     
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