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Abstract
1.	 Individual variation in habitat selection and movement behaviour is receiving 

growing attention, but primarily with respect to characterizing behaviours in dif-
ferent contexts as opposed to decomposing structure in behaviour within popu-
lations. This focus may be limiting advances in understanding the diversity of 
individual behaviour and its influence on population organization. We propose 
a framework for characterizing variation in space-use behaviour with the aim of 
advancing interpretation of its form and function.

2.	 Using outputs from integrated step-selection analyses of 20 years of teleme-
try data from African elephants Loxodonta Africana, we developed four metrics 
characterizing differentiation in resource selection behaviour within a popula-
tion (specialization [magnitude of the response independent of direction], het-
erogeneity [inter-individual variation], consistency [temporal shift in response] 
and reversal [frequency of directional changes in the response]).

3.	 We contrasted insight from the developed metrics relative to the mean popula-
tion response using an example focused on two covariates. We then expanded 
this contrast by evaluating if the metrics identify structurally important infor-
mation on seasonal shifts in resource selection behaviours in addition to that 
provided by mean selection coefficients through principal component analyses 
(PCAs) and a random forest classification.

4.	 The simplified example highlighted that for some covariates focusing on the 
population average failed to capture complex individual variation in behaviours. 
The PCAs revealed that the developed metrics provided additional information 
in explaining the patterns in elephant selection beyond that offered by popula-
tion average covariate values. For elephants, specialization and heterogeneity 
were informative, with specialization often being a better descriptor of differ-
ences in seasonal resource selection behaviour than population average re-
sponses. Summarizing these metrics spatially and temporally, we illustrate how 
these metrics can provide insights on overlooked aspects of animal behaviour.

5.	 Our work offers a new approach in how we conceptualize variation in space-use 
behaviour (i.e. habitat selection and movement) by providing ways of encap-
sulating variation that enables diagnoses of the drivers of individual-level vari-
ability in a population. The developed metrics explicitly distil how variation in a 
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1  |  INTRODUC TION

While characterizing the sources and magnitude of variation in 
behaviour has received growing attention, work to date has been 
largely exploratory and focusing on characterizing the behaviour 
observed in specific contexts, rather than the components of the 
behaviour that change between individuals or across contexts. 
Moreover, even with systems with strong individual variation, in-
terpretation often collapses heterogeneity and focuses on the 
population-level inferences. A concern is that current approaches 
for assessing variation in behaviour may be stymying advances in 
understanding key aspects of individual behaviour, with particular 
relevance to dissecting interactions between conspecifics (but see 
Hertel et al., 2021). For instance, systematically focusing on popu-
lation average response (and on its underlying assumption of nor-
mally distributed variation among individuals) fails to consider the 
possibility that individuals within a population might be purpose-
fully differentiating behaviour to reduce competition (which would 
be reflected by a bi- or multi-modal distribution of behaviours; 
Bolnick et al.,  2003). More critically, if such structure exists in a 
system, standard assumptions (e.g. that individual variation around 
a parameter follows a Gaussian distribution) behind popular mod-
elling frameworks (mixed-effects models; Bolker et al., 2009) could 
be misleading in that population-level averages are not representa-
tive of any behaviour.

Ecologists considered variation in behaviour as a nuisance or 
a source of uncertainty, but studying variation in movement and 
its drivers has become one of the nexus between behaviour and 
ecology. In particular, structural differences between individu-
als in the behavioural process of resource (or habitat) selection 
and its associated movement has been shown to drive spatial 
partitioning and reflect differential strategies in populations 
(Bastille-Rousseau & Wittemyer,  2019). By temporally and spa-
tially adjusting their use of resources, animals are able to balance 
multiple trade-offs (e.g. foraging opportunities with safety from 
predators; Laundré, 2010). While seasonal and diurnal character-
ization of resource selection is common (Courbin et al.,  2009), 
characterization of finer temporal changes in resource selection, 
such as state-dependent or energy-dependent resource selec-
tion, offers deeper insight to behavioural drivers of population 
spatial structure (Grenier-Potvin et al., 2021; Hooten et al., 2018). 
Resource selection has also been shown to be influenced spa-
tially by local context, a multiscale phenomenon referred to as 
functional responses in habitat selection (Moreau et al.,  2012). 

Lastly, variation in behaviour can be related to individual varia-
tion, whether because of differences in individual personality or 
plasticity (Hertel et al., 2020). Encapsulating individual resource 
selection behaviour or movement into a behavioural reaction 
norms framework has also improved the formal quantification of 
individual variation in resource selection, including the quantifi-
cation of repeatability (Leclerc et al., 2016).

Ecology has a recurrent history of initially considering complex-
ity as a nuisance more than the feature of interest. For example, 
while autocorrelation in movement behaviour has historically been 
considered as a statistical nuisance, Wittemyer et al.  (2008) and 
Boyce et al.  (2010) have shown that it possesses behaviourally 
relevant information. Notably, the structuring of variation in a 
behaviour of interest itself, like resource selection, might contain 
information that may better characterize nuances in a behaviour. 
For example, daily changes in movement and resource selection 
behaviour have been identified as core behaviours to balance 
foraging-risk trade-offs (Hebblewhite & Merrill,  2009; Ihwagi 
et al., 2018), where the changes in the behaviour itself are more 
informative to understanding the trade-off than the actual daily or 
nightly response. A similar logic could apply to seasonal changes 
in resource selection behaviour or movement, including changes 
in behaviour between periods of resource limitation and resource 
abundance (e.g. dry vs wet seasons). Given the potential of such 
fundamental processes driving structure in resource selection (and 
other) behaviours, we suggest that a more clearly defined approach 
to the systematic assessment of the temporal and inter-individual 
variation in behaviour is needed. The challenge is to find better 
ways of distilling this information.

Here, we propose a shift in how we study resource selection by 
proposing a framework focused on quantifying the aspects of the 
individual and temporal variation in resource selection behaviour 
within a population that can facilitate interpretation of its form and 
function and focus inter-population comparisons across time and 
space. We outline several new metrics of differentiation among in-
dividual behaviours and illustrate how these metrics provide unique 
insight to overlooked aspects of the behaviour (Figure 1). These sim-
ple metrics can be calculated from typical outputs of resource selec-
tion and movement analyses such as resource selection functions 
or step-selection functions (Fortin et al., 2005) providing individual-
level coefficients. The presented metrics quantify (i) the magnitude 
of the response, not its direction (specialization), (ii) the extent of 
individual variation (heterogeneity) and (iii) temporal changes in be-
haviour (consistency and reversal).

behaviour is structured among individuals and over time which could facilitate 
comparative work across time, populations or strata within populations.

K E Y W O R D S
African elephant, GPS telemetry, individual variation, movement, resource selection, 
specialization, step-selection function
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To illustrate the utility of these new metrics, we evaluated 
space-use patterns using step-selection functions of African el-
ephants Loxodonta Africana in northern Kenya. African elephants 
are recognized for displaying complex behaviours, including strong 
temporal and spatial variation in resource selection behaviour 
(Bastille-Rousseau & Wittemyer,  2019). Given the complexity 
of elephant resource selection in this system, it offers a salient 
case on which to evaluate the insights offered by the described 
metrics of variation in resource selection. To better highlight the 
aspects of behavioural differentiation the metrics captures, we 
first present a focused example assessing each metric on two co-
variates: vegetation productivity and elephant distance to village. 
We then expand our analysis to address two questions: (1) do the 
newly developed metrics provide additional information not cap-
tured by the population response across all covariates, and (2) is 
this additional information highlighting differences in complex 

behaviours not captured by the population response. For this 
second question, we focused on highlighting differences among 
seasonal behaviours. For both questions, we used metrics derived 
from individual-level integrated step-selection analyses (iSSAs; 
Avgar et al., 2016) to jointly characterize resource selection and 
movement behaviour of elephants on a seasonal basis. We then 
used multivariate analyses to evaluate how these metrics provide 
different information from population average response. Given 
previous lines of evidence of purposeful differentiation among 
individual elephants in resource selection behaviour during the 
dry period (Bastille-Rousseau & Wittemyer,  2019) and of day–
night switches in movement speed in response to risk (Ihwagi 
et al., 2018), we expected metrics of specialization and reversal to 
be particularly informative. We discuss how our proposed shift in 
how we evaluate and study resource selection or other behaviours 
can drive new insights to animal systems.

F I G U R E  1  Schematic illustrating the 
calculation of the developed metrics 
(specialization, heterogeneity, consistency 
and reversal) for a simple case evaluating 
resource selection for a single resource 
over two periods (here day and night). (a) 
A resource selection function or step-
selection function is estimated using 
mixed-effects models (Muff et al., 2020) 
or individual-level modelling (Bastille-
Rousseau & Wittemyer, 2019). (b) 
Individual-level coefficients are extracted 
for each individual and each time period. 
(c) For comparison purpose, a population 
average can be calculated for each time 
period by taking the mean of the raw 
values of the individual coefficients. 
Our first metric, specialization, can be 
calculated by taking the absolute value of 
individual coefficients and then averaging 
them. Heterogeneity is calculated by 
taking the standard deviation of the raw 
coefficients. Consistency and reversal 
are the metrics that evaluate differences 
in behaviour between the two temporal 
periods. Consistency is calculated by 
first taking the difference between an 
individual coefficient in the first and 
second period and then averaging the 
absolute of these differences among 
individuals. Reversal is calculated by first 
tallying whether an individual response is 
in an opposite direction (=1) or not (=0) 
between the two temporal periods and 
then averaging among individuals
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2  |  MATERIAL S AND METHODS

2.1  |  Study area

The Laikipia/Samburu ecosystem in northern Kenya (approximately 
0.4°S to 2°N, 36.2°E to 38.3°E) is inhabited by the country's second 
largest elephant population. Land use in the area include national 
(3% of study area) and forest reserves (4%), community conserv-
ancies (including management units within community conservan-
cies such as delineated ‘core’ zones, 65%), private conservancies 
(<1%), private lands (5%), communal lands (11%) and government 
lands (11%). These land tenures differ in human predation risk for 
elephants (Ihwagi et al., 2015). The area has a variety of habitats, 
including cool moist highland forests and semi-arid savanna. The 
system generally experiences two wet periods and two dry periods 
annually, but with rainfall being highly stochastic (Bastille-Rousseau 
et al., 2020).

2.2  |  Data collection

We analysed GPS data collected since 1998 from 156 elephants 
(425 elephants-years) in this area as part of a long-term research 
project. Elephant capture and handling protocols were approved 
by the Institutional Animal Care and Use Committee at Colorado 
State University (Amendment 1625, March 2022). GPS data col-
lected from females represent a family unit of between nine and 15 
individuals and males typically represent a single individual. On one 
occasion, more than one elephant was tracked simultaneously from 
the same family, which we controlled for by excluding one of the 
individuals for this analysis. Elephant families were considered as an 
individual unit, even if the collars were not always on the same indi-
vidual. Erroneous locations were filtered by a speed filter of 9 km/hr. 
Individual elephant tracking datasets averaged 22,879 locations and 
1005 days (range 179–142,654 locations, 18–4910 days) with a total 
sample of 3,591,945 locations. GPS locations were converted into 
trajectories where a step is the straight line between two consecu-
tive locations. Only steps with a time interval between two locations 
of 1 hr were included in the analysis (i.e. locations taken at a higher 
resolution were resampled to 1 hr).

2.3  |  Environmental variables

We compiled a series of spatial covariates to analyse elephant move-
ment and resource selection. These covariates included a 30-m Landsat 
land cover classification reclassified into four landcover types: forest 
(7% of study area), wooded savanna (58%), open savanna (29%) and 
other types (6%). We also measured the Euclidean distance to roads 
and water sources. Roads were classified as primary (tarmac roads) 
and secondary (dirt roads). Water sources were characterized as per-
manent and seasonal sources. Roads and water sources were manually 
digitized from high-resolution land cover and verified where possible 

by ground teams. We obtained elevation data at a 30 m resolution from 
the Shuttle Radar Topography Mission (SRTM) and used them to gen-
erate a slope layer. Normalized difference vegetation index (NDVI) was 
extracted from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) vegetation product (Justice et al., 1998). MODIS vegetation 
indices, which span the years 2000–2018, are provided at a 250 m 
resolution every 16 days, yielding 23 composites per year. Temporal 
trends in NDVI data were also used to delineate wet, dry and transition 
periods using a clustering algorithm based on a normal mixture cluster-
ing (Fraley & Raftery, 2002). To quantify the change in human features 
in the area, human-associated features were digitized manually across 
the area using imagery available through Google Earth (see Bastille-
Rousseau et al., 2020 for further details). We used this information to 
generate a layer of distance to villages and towns and layers of spa-
tial density of permanent and non-permanent (i.e. seasonal) dwellings, 
which were extracted across a 500-m radius moving window.

2.4  |  Movement and resource selection behaviour 
characterization

We evaluated resource selection and movement behaviour of el-
ephants using an iSSA based on a conditional use-available design 
(Avgar et al., 2016; Fortin et al., 2005). We compared used locations 
to potential available steps sampled within the area the animal could 
have reached during that step. Available step lengths were sampled 
from a gamma distribution parametrized based on observed step 
lengths of the entire population. Turn angles for available steps were 
sampled from a uniform distribution ranging from -π to π. For each 
used step, 25 random steps were generated. All spatial covariates, 
including biotic, abiotic and human features on the landscape, were 
extracted for all used and random locations. All continuous variables 
were centred and standardized (Schielzeth, 2010). The model also in-
cluded an interaction between all covariates and a categorical varia-
ble (with six levels) combining day/night and seasons (wet, transition 
and dry). We fitted the same model to each individual-year sepa-
rately (Bastille-Rousseau & Wittemyer,  2019; Fieberg et al.,  2010) 
to derive individual by year coefficients using the R package IndRSA 
(link: http://github.com/Basti​lleRo​ussea​u/IndRSA).

2.5  |  Characterizing the structure of variation in 
space-use behaviour

Investigations focusing on individual variation in resource selection 
behaviour frequently use individual-level coefficients as a response 
variable in univariate analyses (e.g. functional responses or behavioural 
reaction norms analyses; Moreau et al., 2012; Hertel et al., 2020) or in 
a multivariate fashion (Bastille-Rousseau & Wittemyer, 2019). Here, 
we looked at the patterns in variation in resource selection coeffi-
cients that capture how individuals use specific resources and how 
dynamic selection is over time. To accomplish this, we developed 
four metrics capturing structural aspects of variation in resource 
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selection behaviour: specialization, heterogeneity, consistency and 
reversal (Figure 1). While the population average is often represent-
ing a weighted mean of individual coefficients with their uncertainties 
(Murtaugh, 2007), in a simplistic case, this population-level response 
can be approximated by taking the mean of individual coefficients xi, 
for a specific resource r at time period t and from n individuals:

Following the same notation, we quantified ‘specialization’ as the mag-
nitude of individual response to a resource, independent of its direc-
tion, calculated as:

Based on Equation  2, specialization should be strictly positive, with 
higher values indicating a higher degree of specialization. Relatedly, 
the ‘heterogeneity’ metric indicates the degree of individual variation 
(or degree of individual by year/season variation) in the response to a 
resource and calculated as:

The heterogeneity metric is simply calculating the standard deviation 
of individual coefficients for a resource and will therefore also always 
be positive. The ‘consistency’ metric evaluates how similar the re-
sponse for a resource is across temporal periods. For two temporal 
periods (e.g. day and night), the consistency is calculated as:

where t1 and t2 represent the two different time periods. Consistency 
should also always be positive with values closer to zero indicating 
higher consistency between the two temporal periods. Similarly, for 
three temporal periods (e.g. among the wet, dry and transition sea-
sons), consistency could be calculated as:

Lastly, ‘reversal propensity’ evaluates the propensity of individual 
switching from a positive selection for a resource during a given tem-
poral period to a negative selection during another time period (or vice 
versa). For two temporal periods, reversal can be calculated as:

where sgn represents the sign of an individual coefficient for a specific 
resource and time period. Following Equation  6, reversal should be 
bounded between 0 and 1 with higher values indicating a higher rate of 
reversal. For three temporal periods, reversal is calculated as follows:

2.6  |  Propagation of uncertainties within 
each metric

Metrics described above do not account for the uncertainties as-
sociated with each individual coefficient (i.e. the standard error 
associated with a given coefficient). While it is possible to weigh 
coefficients based on their uncertainties and aggregate them to 
obtain population averages (Murtaugh, 2007), such weighting is im-
practical to implement for some of our metrics (such as reversal). 
Instead, we used a data augmentation procedure to account for 
uncertainties whereby we simulated 1000 replicates of individual 
coefficients based on a normal distribution centred on the coeffi-
cient values where we assigned the standard deviation as equal to 
the standard error associated with the coefficients. We calculated 
each metric for each replicate of the dataset. Metrics based on coef-
ficients with generally small standard errors will have very similar 
values in each replicate and be more informative while metrics cal-
culated from coefficients with larger standard error will have values 
that fluctuates more. This data augmentation approach is analogue 
to performing multiple iSSA using slightly different samples of data 
for each individual. We note that this propagation of uncertainty is 
especially helpful when comparing the metrics across covariates or 
temporal periods, but given the formulation of the metrics does not 
offer a straightforward way of assessing their significance. The data-
set containing estimates of the different metrics for each replicate 
represents the basis of subsequent multivariate analyses. Code for 
implementation of each of these metrics is available in the IndRSA 
R package.

2.7  |  Case study of metric application in the 
elephant system

To better highlight the interpretation of the different metrics and the 
type of insights they offer, we first provide a detailed overview of 
these metrics focusing on two of the 11 covariates estimated in the 
iSSA: vegetation productivity (as measured by NDVI) and distance to 
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village. Elephant responses to these covariates and, therefore, met-
rics of these response were expected to be divergent, with similar 
individual but different temporal responses to NDVI in contrast to 
stronger individual variation in response to village (Bastille-Rousseau 
et al.,  2020). For each covariate, we summarized variation among 
each metric based on the 1000 replicates (as described above) and 
evaluated cross-correlation among each metric to assess the similar-
ity (or dissimilarity) of information provided.

2.8  |  Question 1: Are the metrics of variation in 
space-use behaviour providing additional information 
across all covariates?

We tested the hypothesis that the developed metrics will provide 
additional information on resource selection behaviour relative to 
the typical population average response. We applied principal com-
ponent analyses (PCAs) to the metrics calculated for each covariate 
and each season of the iSSA to identify the metrics most informative 
for explaining variation in the resource selection behaviour. More 
specifically, for each covariate (e.g. landcover type, slope, NDVI…), 
we used a PCA to highlight if the new metrics provided information 
not contained by the average response (where the columns repre-
sent the different metrics and rows represent the 1000 iterations). 
This would be indicated by the main PCA axes not including aver-
age response as a significant contributor based on its eigenvector 
or by the population response generally being outperformed by 
other metrics in their contribution to the main PCA axes. Using each 
covariate-season, we extracted how frequently each metric (aver-
age response, specialization, heterogeneity, daily consistency and 
daily reversal) contributed significantly (contribution >5%) to the 
first three PCA axes, how frequently each metric was the biggest 
contributor to the first three PCA axes and how frequently each 
metric was within the top three contributors to the first three PCA 
axes. We also reported the average per cent of variation explained 
by each of the PCA axis. We implemented a standard assessment 
across three PCA axes to maintain consistency in outputs across 
covariate analyses.

2.9  |  Question 2: Are the metrics of variation in 
space-use behaviour better at highlighting differences 
in seasonal behaviour?

We evaluated if metrics such as specialization, heterogeneity, con-
sistency and reversal may be more informative than population 
averages in understanding shifts in elephant behaviour by applying 
a random forest classification algorithm to identify variables most 
important to explaining differences in elephant behaviour among 
seasons. We performed this analysis on three subsets of variables 
to facilitate identification of the key seasonal shifts structuring 
selection behaviour. These included the ‘environmental’ subset 
(landcover, slope, distance to water and NDVI), the ‘anthropogenic 

activities’ subset (distance to road, density of bomas and distance 
to village) and the movement subsets (step length and cosine of 
turning angle). Random forest classification was done using 1000 
trees and variable importance was measured using the Gini index 
(Han et al., 2016). A variable with a higher importance indicates a 
variable that is better (more important) at explaining differences 
in elephant behaviour among seasons. If the developed metrics 
provide useful information, we expect these metrics to be pre-
dominant in the variables with the highest importance. This part 
of the analysis was done using the randomForest R package (Liaw 
& Wiener, 2002).

3  |  RESULTS

After excluding individuals with insufficient amount of data (less 
than 100 observed steps in a given season), 334 elephant-years from 
96 individuals were included in the analyses for a total of 1,984,614 
observed movement steps. The number of individuals monitored on 
a seasonal basis were 333 elephant-years during the dry season, 334 
elephant-years during the transition season and 334 elephant-years 
during the wet season.

3.1  |  Overview of elephant resource selection and 
movement behaviour

Average coefficient values from iSSA demonstrated that elephants 
displayed daily or seasonal variation in fine-scale resource selection 
for most resources (Figure S1). This included a generally weak re-
sponse to land cover types (forest, wooded or other), strong selec-
tion for NDVI across seasons and time of day (with relatively tight 
confidence intervals around coefficient values, Figure  2) and con-
sistent attraction to water (both seasonal and permanent) particu-
larly at night. Elephants displayed variable selection for roads and 
avoided areas with higher density of seasonal or permanent bomas. 
However, confidence intervals were broad around coefficient val-
ues and elephants displayed strong diurnal shift in their response to 
(distance to) villages during the dry and transition season (Figure 2). 
Elephant generally moved longer distance during the day than at 
night, especially during the wet season. Patterns in turning angle 
remained relatively constant across time (Figure S1). Full results of 
resource selection behaviour as summarized by each metric are pre-
sented in Supporting Information, Appendix S1.

3.2  |  Case study of metric application

Comparing the metric values for NDVI and distance to village high-
lighted the potential role of each of the metrics in understanding 
elephant behaviour (Figure  2). For NDVI, specialization largely 
mirrored average response for each time period and heterogene-
ity was relatively small (Figure  2), demonstrating the selection for 
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vegetation was captured by the population-level average response. 
Lastly, consistency and reversal values were small, indicating that 
the selection for NDVI is relatively constant between day and night. 
For each of those metrics, the data augmentation approach showed 
limited uncertainty as shown by relatively tight whisker plots.

In contrast, the population average, which suggested no to weak 
response for distance to village, contrasted sharply with metrics of 
differentiation. Specialization was actually stronger for distance to 
village than NDVI (Figure 2) and markedly different from the popula-
tion average (as indicated by non-overlapping uncertainties between 
the average and specialization). This indicates elephants showed op-
posite responses to villages. Relatedly, the heterogeneity value was 
higher than that of NDVI. Consistency and reversal were also higher 
for distance to village indicating stronger diurnal responses in ele-
phant behaviour for this covariate (Figure 2), with over half of the 
individuals having an opposite response to village between day and 
night as indicated by reversal values >0.5 (Figure 2). These patterns 
were also evident from the cross-correlations analyses (Figure  3). 

For NDVI, there was a strong correlation between average popu-
lation response and specialization (indicating most individuals dis-
played the same response to vegetation), especially during the dry 
season while this correlation was weaker for distance to village 
(Figure 3). For both covariates, specialization tended to be correlated 
with heterogeneity (Figure 3), indicating that the individual variation 
observed was related to some individuals avoiding and others select-
ing for the resource.

3.3  |  Question 1: Are the developed metrics 
providing additional information?

The application of a PCA to each covariate-season demonstrated 
that the first three axes captured around 73% of the variation in 
the observations (Table 1), but the population mean response was 
never the top contributor to PCA1 and PCA2 and rarely the top 
contributor to PCA3. Further, it was not identified as a significant 

F I G U R E  2  Boxplots of the metrics 
of variation of 96 African elephants 
inhabiting northern Kenya for two 
covariates estimated using an integrated 
step-selection analyses. Plots represent 
response of elephants to each covariate 
and the six metrics for the dry season 
during day and night (colour coded). Since 
the consistency and reversal metrics 
compare diurnal behaviour, only one 
boxplot is presented. Similar figures 
including the transition and wet periods 
are presented in Figures S6 and S7, 
Appendix S1. Boxplots are based on 1000 
permutations where tighter plots indicate 
lower uncertainty in the results
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contributor of the first three PCAs axes in over half of covari-
ates (59%), indicating that our metrics capturing different types 
of structure in the data tended to explain more of the variability 
in the iSSA results. The variables most likely to be a significant 
contributor of PCA1 were daily consistency, specialization at night 
and heterogeneity at night, while specialization during the day and 
heterogeneity during the day were most often considered a sig-
nificant contributor to PCA2. Specialization during the night and 

daily consistency were most often the top contributors to PCA1 
while specialization during the day and heterogeneity during 
the day were most often the top contributors of PCA2 (Table 1). 
Interestingly, reversal was only an important contributor of PCA3 
as indicated by each summary statistic (Table  1). This indicates 
quantification of differences in selection coefficients between in-
dividuals provided more explanation of selection behaviour than 
simply average values.

F I G U R E  3  Cross-correlation plots showing correlation between metrics of variation (average [avg], specialization [spe], heterogeneity 
[hetero], reversal and consistency) of 96 African elephants inhabiting northern Kenya for two covariates estimated using an integrated 
step-selection analyses. Plots represent correlation for the dry season and two covariates (NDVI and distance to village). The magnitude 
of the correlation coefficient and its direction are colour coded and represented via an ellipse where a narrower ellipse represent a higher 
coefficient and the orientation of the ellipse the direction of the correlation. Similar figures including the transition and wet periods are 
presented in Figures S6 and S7, Appendix S1
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3.4  |  Question 2: Are the new metrics better at 
highlighting differences in seasonal behaviour?

Overall, across subsets of covariates, average response and spe-
cialization were most frequently the top variables with the high-
est importance scores, followed by heterogeneity and consistency 
in explaining seasonal differences in resource selection (Figure  4). 
Metrics of selection for the environmental covariates included NDVI 
and distance to permanent water (Figure 4), suggesting these were 
the two environmental factors driving differentiation in selection 
across seasonal fluxes. For the anthropogenic subset of covariates, 
average distance to primary road at night and specialization towards 
distance to village during the day were the two most important vari-
ables (Figure 4). Daily consistency in distance to road, specialization 
and heterogeneity in distance to primary road during the day were 
also among the top five most important metrics (Figure 4).

4  |  DISCUSSION

Data acquisition and analytical innovations driven by improvements 
in technology are allowing remote observations of animal behaviour 
(such as GPS telemetry and camera traps) that have opened new av-
enues to addressing fundamental ecological questions (Wittemyer 
et al., 2019). This innovation and enhanced movement data collec-
tion is allowing more thorough understanding of differentiation 
between individuals in their spatial behaviour (Bastille-Rousseau & 
Wittemyer, 2019). Our goals were to develop new metrics to better 
characterize the structure of variation among the behaviour of indi-
viduals in a population. We focused our analysis on variation in re-
source selection and movement behaviour by wild African elephants. 
Our metrics characterized the type of variation found in resource se-
lection coefficient values across covariates and highlighted specific 

attributes of that variation in selection coefficients. Specifically, we 
quantified specialization (magnitude of the response independent 
of the direction), heterogeneity (individual variation in response), 
temporal consistency (temporal difference in response) and tempo-
ral reversal (frequency of change in the direction of the response). 
Our analyses revealed that these new metrics provided additional 
information in explaining the patterns found beyond that offered by 
the population average coefficient value, showing that this new in-
formation can more explicitly characterize complex behaviours that 
are often absorbed into variance estimates. In our study system of 
African elephants inhabiting northern Kenya, specialization and het-
erogeneity were particularly informative, with specialization often 
being a better descriptor of differences in seasonal resources se-
lection behaviour than population average responses to covariates, 
potentially indicating that elephants diversify their niche space by 
displaying opposing tactics as exemplified with elephant response to 
village (Figure 2). Contrary to our prediction, reversal provided lim-
ited information in this study. While previous work in this system has 
described strong variation in elephant behaviour (Bastille-Rousseau 
& Wittemyer, 2019), the new metrics provide better ways of distill-
ing and understanding how this variation is structured among indi-
viduals and over time. Overall, our work offers a fundamental shift 
in how we conceptualize and study variation in resource selection 
behaviour that has direct implications for myriad animal systems and 
behaviours.

4.1  |  Structure of variation in elephant space-use

Elephant fine-scale resource selection evaluated via iSSAs provided 
results that were overall in agreement with previous studies in the 
same system (Bastille-Rousseau et al.,  2020; Bastille-Rousseau & 
Wittemyer,  2019). Variables most important in shaping elephant 

TA B L E  1  Summary statistics of the contribution of each metric to three axes of a principal component analysis (PCA). PCAs were 
performed for each covariate of the integrated step-selection analysis to evaluate the interrelation among metrics. Summary statistics 
included how frequently a metric was significantly included (contribution >5%) in a given axis, how frequently the metric was the metric with 
the biggest (top) contribution to an axis and how frequently was the metric within the top three metrics. Average percentage of variation 
(and range) of each axis across covariates are also given

Variable
Inclu 
PCA1 Inclu PCA2

Inclu 
PCA3

Top1 
PCA1

Top1 
PCA2

Top1 
PCA3

Top3 
PCA1

Top3 
PCA2

Top3 
PCA3

Pop. mean night 0.405 0.238 0.524 0.000 0.000 0.071 0.024 0.214 0.524

Pop. mean day 0.310 0.571 0.333 0.000 0.000 0.000 0.238 0.452 0.310

Specializ. night 0.810 0.595 0.214 0.381 0.214 0.000 0.714 0.452 0.167

Specializ. day 0.548 0.857 0.095 0.190 0.405 0.000 0.310 0.690 0.024

Hetero. night 0.762 0.571 0.357 0.167 0.095 0.048 0.690 0.381 0.190

Hetero. day 0.476 0.762 0.071 0.048 0.286 0.000 0.238 0.714 0.048

Rev. day–night 0.000 0.024 1.000 0.000 0.000 0.833 0.000 0.000 1.000

Cons. day–night 0.929 0.071 0.786 0.214 0.000 0.048 0.786 0.095 0.738

PCA1% variation 0.327 (0.264, 0.473)

PCA2% variation 0.249 (0.210, 0.302)

PCA3% variation 0.151 (0.127, 0.215)
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resource selection were mostly related to access to resources such 
as vegetation productivity (as assessed with NDVI) and water or 
related to avoidance of humans. In our system, elephant response 
to NDVI was uniform among individuals and over time relative to 
distance to village, which showed greater variation in individual re-
sponses. We leveraged this contrast in structure to highlight the ap-
plicability of our metrics. The analysis of distance to village offered 

a clear example of where focusing inferences on the population 
average masked more complex patterns as shown by the strong 
specialization and heterogeneity observed for this resource. In con-
trast, specialization and population average were strongly correlated 
for NDVI, indicating little divergence from the population average 
in responses and less information from our metrics.Results of the 
PCA (Table 1) were further supportive of our first hypothesis that 

F I G U R E  4  Importance of variables 
(based on the Gini index estimated using 
a random forest algorithm) in explaining 
differences among seasons. For each 
subset of covariates (environmental 
and anthropogenic), only the top 10 
metrics are presented. Movement-related 
covariates are presented in Supporting 
Information, Appendix S1. Metrics 
included in the random forest analysis 
included average (avg), specialization 
(speci), heterogeneity (hetero), reversal 
and consistency (cons)
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the developed metrics provided different information. This was 
best indicated by the rare inclusion of the population average re-
sponse (at night or day) in the top three contributors of PCA1 and 
PCA2 (Table 1) and by population average rarely being a significant 
contributor of PCA1. On the other hand, metrics of specialization, 
heterogeneity and temporal consistency were generally significant 
contributors of PCA1 or PCA2 and were most often the top contrib-
utor or within the top three contributors of these axes. Interestingly, 
for most covariates, PCA1 tended to include metrics associated with 
night behaviour (or daily consistency) while PCA2 tended to include 
metrics associated with day behaviour. This suggests distinct be-
haviours in elephant diurnal responses to multiple resources which 
covary diurnally. While behavioural variation in resource selection 
is often thought to be shaped by a subset of resources, for example 
resources used for foraging or safety (Bonnot et al.,  2015; Hertel 
et al., 2021), the diurnal structuring in elephant behaviour reported 
here seems to supersede the different motivations elephants might 
have for different resources.

Results of the random forest classification moderately supported 
our hypothesis that the new metrics will be better than population 
average response in differentiating elephant behaviour among sea-
sons for each subset of variables (environmental, anthropogenic and 
movement, Figure 3). Overall, population average and specialization 
were similar in explaining differences in elephant behaviour among 
seasons in regard to selection for environmental and anthropogenic 
variables and often for the same variables. For example, the top four 
environmental variables in importance were population average and 
specialization regarding NDVI during the night and day. As shown in 
our simplified example, the main reason for this is that response for 
NDVI was strong and fairly uniform across individuals and therefore 
population average and specialization contained similar information. 
This was however not the case for all resources, especially for an-
thropogenic variables. Specialization regarding distance to village 
was the second ranked anthropogenic variable in importance in the 
anthropogenic subset, but the average population response to this 
variable was not included in the top 10. As discussed above, this in-
dicates that while elephants react strongly to villages, they adopted 
opposite tactics in their seasonal selection for villages. Even if the 
movement subset (Figure  S8, Appendix  S1) only contained met-
rics related to step length and turning angles, this subset had con-
sistency in step length as the most important variable. Day–night 
shift in movement speed and tortuosity has been identified and 
suggested as a potential proxy of elephant response to risk (Ihwagi 
et al.,  2019), with elephant increasing movement at night in risky 
landscape (Ihwagi et al., 2018). Our results indicate that this tempo-
ral shift is varying by season.

4.2  |  Applicability to different 
contexts and systems

While our analyses indicated that the newly developed metrics pro-
vide complimentary information to the population average, how to 

leverage and use this additional information to study animal behav-
iour is not intuitive. Specialization and heterogeneity can be easily 
integrated to existing workflows to perform resource selection anal-
yses and could become routine metrics to report in addition to (or 
in some case possibly even instead of) the population average. We 
recommend that researchers consider and explore the possibility 
that specialization might provide information omitted in the popula-
tion average response, and clarity on the uniformity, or lack thereof, 
of responses can be determined by evaluating and comparing both 
metrics. A species displaying strong specialization and heteroge-
neity in the absence of significant, average population selection/
avoidance might be indicative of a system with strong intraspecific 
competition where individuals can potentially use resources differ-
ently or in systems where personality (e.g. boldness) can strongly 
shape resource selection (Bolnick et al., 2003). If specialization ap-
pears more informative than the average response, this indicates 
that focusing on the population average is misleading since it is fail-
ing to capture a bimodal (or more complex) pattern in a population 
response. Temporal consistency and reversal metrics do not concep-
tually integrate as easily into the typical workflow of resource selec-
tion analyses. Rather, there use might be limited to research focusing 
on the temporal structuring of specific behaviours.

Accounting for individual variation has become more popular 
thanks to improvement in mixed-effect models including random 
slopes (Muff et al., 2020), but quantifying its magnitude and structure 
has been less common. A formal accounting of the heterogeneity in 
responses can be beneficial given it is a source of uncertainty around 
the population average. Similarly, how resource selection analyses 
are often mapped to illustrate areas with higher and lower probability 
of use, spatial representation of specialization or heterogeneity can 
be informative about where behavioural variability may be greatest. 
Maps representing specialization highlight areas where individuals 
respond strongly (but potentially differently) to specific resources. 
Maps representing heterogeneity are complimentary to population 
average maps by representing areas with greater differentiation be-
tween individual predictions. In our system (Figure 5), mapping these 
metrics highlighted the similarity between specialization and average 
selection in most areas, and that differences between the two were 
more marked during the dry than wet season. Heterogeneity in re-
source selection also seemed to be lower in proximity to permanent 
water, suggesting similar behaviour across individuals included in the 
analysis in that area. These patterns, highlighting where selective be-
haviour is most acute and most variable across individuals, show that 
limited resources (like water in an arid ecosystem) can elicit similar re-
sponses, while increased differentiation in selection for outlying areas 
from such resources was apparent.

Taken altogether, these spatial representations of the different 
metrics could be informative for conservation purposes by identify-
ing areas of consistent (areas with high specialization, low heteroge-
neity, high consistency and low reversal) or differentiated use that 
could characterize locations of general benefit. Areas with strong 
symmetry in behaviour are likely of fundamental importance, while 
differentiated areas likely relate to behavioural strategies. While we 
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focused on diurnal structuring, consistency and reversal are easily 
applicable to other temporal periods such as seasons or even peri-
ods related to an animal life-history trait (reproduction or dispersal). 
Characterizing resource selection behaviour using different tempo-
ral subset of data has been the main way to deal with this temporal 
variation. Popular examples include examining resource selection 
over different periods because of expected change in predation risk 
(Hebblewhite & Merrill, 2009) or changes in resource value (Courbin 
et al.,  2009). Our work represents an expansion from this line of 
work. Instead of contrasting two (or more) separate behaviours, we 
quantified the magnitude of the shift (or propensity of reversal) in 
a behaviour as a powerful means to summarize dynamics in animal 
behaviour.

The metrics developed here are relevant to a broader spec-
trum of behaviours than our application demonstrates. The 
metrics can be easily calculated for any behaviours or traits 
generally quantified over a continuous scale. Specialization and 
reversal are most meaningful when these values can range from 
negative to positive and with an opposite interpretation based 

on the sign, but it would also be possible to standardize the val-
ues beforehand so that they are centred on zero. For example, 
our framework could be applied to metrics associated with so-
cial behaviour, such as association index or centrality measures 
of individual, and help better understand the social structure of 
a population (Aplin et al.,  2013). Similarly, exploration of other 
characteristic behaviours, such as degree of vigilance or time 
spent foraging, with these metrics could provide a better under-
standing of the structure of variation in the behaviours within 
a population (i.e. foraging-risk trade-offs within a population). 
Overall, our work presents tools to better distil the information 
contained within individual-level variation in animal behaviour 
and progresses efforts to fundamentally shift how we study in-
dividual variation.
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F I G U R E  5  Spatial representation of 
population average, specialization and 
heterogeneity in resource selection of 96 
elephants in northern Kenya. Metrics are 
presented for the dry and wet seasons 
during the day period. Population average 
represents a naïve estimate of elephant 
relative probability of occurrence (see 
Signer et al., 2017). Specialization 
represents the magnitude (independent 
of its direction) of elephant response to 
a location. Heterogeneity represents the 
variation in the use of an area among 
individuals. Location of the overall study 
area in northern Kenya is also represented
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